fisica estatica exercicios

fisica estatica exercicios

(Parte 1 de 2)

Prof. Fernando Valentim- nandovalentim@yahoo.com.br

1 | Projeto Futuro Militar – w.futuromilitar.com.br

Exercícios de Física Estática

1. Dois blocos idênticos de comprimento L = 24 cm são colocados sobre uma mesa, como mostra a figura a seguir. Determine o máximo valor de x, em cm, para que os blocos fiquem em equilíbrio, sem tombarem.

02) ) Um sistema de polias, composto de duas polias móveis e uma fixa, é utilizado para equilibrar os corpos A e B. As polias e os fios possuem massas desprezíveis e os fios são inextensíveis. Sabendo-se que o peso do corpo A é igual a 340 N, determine o peso do corpo B, em newtons.

03) Cada um dos quadrados mostrados na figura a seguir tem lado b e massa uniformemente distribuída. Determine as coordenadas (x , y) do centro de massa do sistema formado pelos quadrados.

04) O esquema a seguir representa um sistema composto por uma placa homogênea (A) de secção reta uniforme, que sustenta um tijolo (B) em uma de suas extremidades e está suspensa por um fio(C).

Considerando que a placa mede 3,0m de comprimento, tem peso de 30N, e que o tijolo pesa 20N, calcule: a) a que distância do tijolo o fio deve estar amarrado, de modo que o sistema fique em equilíbrio na horizontal; b) a força de tração (T) no fio, se o sistema subir com aceleração de 2,0m/s².

05) Uma menina de 50 kg caminha sobre uma prancha com 10m de comprimento e 10kg de massa. A prancha está apoiada em suas extremidades, nos pontos A e B, como mostra a figura. No instante em que a força normal em B é igual ao dobro da normal em A, a que distância, em METROS, a menina se encontra do ponto B?

06) Um robô equipado com braços mecânicos é empregado para deslocar cargas uniformemente distribuídas em caixas cúbicas de lado 60cm. Suponha que o robô possa ser considerado como um paralelepípedo retangular de base quadrada de lado 80cm e massa 240kg, também uniformemente distribuída. Suponha também que os braços mecânicos tenham massa desprezível e que a carga permaneça junto do robô. Calcule o maior valor possível da massa da carga que o robô pode sustentar sem tombar.

Prof. Fernando Valentim- nandovalentim@yahoo.com.br

2 | Projeto Futuro Militar – w.futuromilitar.com.br

07) Um homem de massa m = 80 kg quer levantar um objeto usando uma alavanca rígida e leve. Os braços da alavanca tem 1,0 e 3,0 m. a) Qual a maior massa que o homem consegue levantar usando a alavanca e o seu próprio peso? b) Neste caso, qual a força exercida sobre a alavanca no ponto de apoio?

08) Um corpo de massa m é colocado no prato A de uma balança de braços desiguais e equilibrado por uma massa p colocada no prato B. Esvaziada a balança, o corpo de massa m é colocado no prato B e equilibrado por uma massa q colocada no prato A. O valor da massa m é: a) pq b)√ c) d) √ e)

09) As figuras a seguir representam esquematicamente, à esquerda, um abridor de garrafas e, à direita, esse abridor abrindo uma garrafa.

Em ambas as figuras, M é ponto de aplicação da força que uma pessoa exerce no abridor para abrir a garrafa. a) Faça a figura da direita e nela represente as forças que atuam sobre o abridor enquanto a pessoa abre a garrafa. Nomeie as forças representadas e faça uma legenda explicando quem as exerce. Não considere o peso do abridor. b) Supondo que essas forças atuem perpendicularmente ao abridor, qual o valor mínimo da razão Fp/Fa entre o módulo da força exercida pela pessoa, ùp e o módulo da força ùa que retira a tampa e abre a garrafa.

10) A figura mostra uma garrafa mantida em repouso por dois suportes A e B. Na situação considerada a garrafa está na horizontal e os suportes exercem sobre ela forças verticais. O peso da garrafa e seu conteúdo tem um módulo igual a 1,4kgf e seu centro de massa C situa-se a uma distância horizontal D=18cm do suporte B.

Sabendo que a distância horizontal entre os suportes A e B é d=12cm, determine o sentido da força que o suporte A exerce sobre a garrafa e calcule seu módulo.

1) Uma escada homogênea de 40kg apóia-se sobre uma parede, no ponto P, e sobre o chão no ponto C. Adote g=10m/s². a) Desenhe as setas representativas das forças peso, normal e de atrito em seus pontos de aplicação. b) É possível manter a escada estacionária não havendo atrito em P? Neste caso, quais os valores das forças normal e de atrito em C?

12) ) Considere uma pessoa de massa m que ao curvar-se permaneça com a coluna vertebral praticamente nivelada em relação ao solo. Sejam m1 = (2/5)m a massa do tronco e m2 = (1/5)m a soma das massas da cabeça e dos braços. Considere a coluna como uma estrutura rígida e que a resultante das forças aplicadas pelos músculos à coluna seja F(m) e que F(d) seja a resultante das outras forças aplicadas à coluna, de forma a mantê-Ia em equilíbrio. Qual é o valor da força F(d)?

13) Considere um automóvel de peso P, com tração nas rodas dianteiras, cujo centro de massa está em C, movimentando-se num plano horizontal. Considerando g =

Prof. Fernando Valentim- nandovalentim@yahoo.com.br

3 | Projeto Futuro Militar – w.futuromilitar.com.br

10 m/s², calcule a aceleração máxima que o automóvel pode atingir, sendo o coeficiente de atrito entre os pneus e o piso igual a 0,75.

14) Quando um homem está deitado numa rede (de massa desprezível), as forcas que esta aplica na parede formam um ângulo de 30° com a horizontal, e a intensidade de cada uma é de 60kgf (ver figura adiante).

a) Qual e o peso do homem? b) O gancho da parede foi mal instalado e resiste apenas até 130kgf. Quantas crianças de 30kg a rede suporta? (suponha que o angulo não mude).

15) Um bloco de peso P = 500N e suspenso por dois fios de massa desprezível, presos a paredes em A e B, como mostra a figura adiante. Calcule o módulo da forca que tenciona o fio preso em B.

16) Na figura a seguir, uma esfera rígida se encontra em equilíbrio, apoiada em uma parede vertical e presa por um fio ideal e inextensível. Sendo P o peso da esfera e 2P a força máxima que o fio suporta antes de arrebentar, o ângulo formado entre a parede e o fio e de:

a) 30° b) 45° c) 60° d) 70° e) 80°

17) Um professor de física pendurou uma pequena esfera, pelo seu centro de gravidade, ao teto da sala de aula, conforme ao lado:

Em um dos fios que sustentava a esfera ele acoplou um dinamômetro e verificou que, com o sistema em equilíbrio, ele marcava 10N. Calcule o peso, em newtons, da esfera pendurada.

18) Sabendo-se que o sistema a seguir esta em equilíbrio, qual é o valor da massa M quando os dinamômetros indicam 100N cada um? a) 17,32 kg b) 20 kg c) 10 kg d) 100 N e) 200 N

19) Na figura anterior, o corpo suspenso tem o peso 100N. Os fios são ideais e tem pesos desprezíveis, o sistema esta

Prof. Fernando Valentim- nandovalentim@yahoo.com.br

4 | Projeto Futuro Militar – w.futuromilitar.com.br em equilíbrio estático (repouso). A tração na corda AB, em N, e:

a) 20 b) 40 c) 50 d) 80 e) 100

20) Um mecânico afirma ao seu assistente que e possível erguer e manter um carro no alto e em equilíbrio estático, usando-se um contrapeso mais leve do que o carro. A figura mostra, fora de escala, o esquema sugerido pelo mecânico para obter o seu intento. Considerando as polias e os cabos como ideais e, ainda, os cabos convenientemente presos ao carro para que não haja movimento de rotação, determine a massa mínima do contrapeso e o valor da forca que o cabo central exerce sobre o carro, com massa de 700 kg, quando esse se encontra suspenso e em equilíbrio estático.

21) As figuras mostram uma ginasta olimpica que se sustenta em duas argolas presas por meio de duas cordas ideais a um suporte horizontal fixo; as cordas tem 2,0m de comprimento cada uma. Na posição ilustrada na figura 1 os fios são paralelos e verticais. Nesse caso, as tensões em ambos os fios valem T. Na posição ilustrada na figura 2, os fios estão inclinados, formando o mesmo ângulo θ com a vertical. Nesse caso, as tensões em ambos os fios valem T' e a distância vertical de cada argola até o suporte horizontal e h=1,80m, conforme indica a figura 2. Sabendo que a ginasta pesa 540N, calcule T e T'.

2) Uma barra de peso desprezível está em equilíbrio na posição horizontal, conforme o esquema a seguir.

As massas de 90 kg e 1,5 Kg se encontram em sua extremidade, sendo que o ponto de apoio está a 40 cm da extremidade direita. Qual o valor da distância “x”, do apoio até a extremidade esquerda, para manter a barra em equilíbrio? a) 240cm. b) 120cm. c) 1,5cm.

d) cm.

23) Gabriel está na ponta de um trampolim, que está fixo em duas estacas – I e I –, como representado nesta figura:

Seja F1 e F2 forças que as estacas I e I fazem, respectivamente, no trampolim. Com base nessas informações, é CORRETO afirmar que essas forças estão na direção vertical e

A) têm sentido contrário, F1 para cima e F2 para baixo. B) ambas têm o sentido para baixo.

C) têm sentido contrário, F1 para baixo e F2 para cima. D) ambas têm o sentido para cima.

24) Um rapaz de 900 N e uma garota de 450 N estão em uma gangorra. Das ilustrações abaixo, a que representa uma situação de equilíbrio é:

Prof. Fernando Valentim- nandovalentim@yahoo.com.br

5 | Projeto Futuro Militar – w.futuromilitar.com.br

25) Para pintar uma parede, Miguel está sobre um andaime suspenso por duas cordas. Em certo instante, ele está mais próximo da extremidade direita do andaime, como mostrado nesta figura:

Sejam TE e TD os módulos das tensões nas cordas, respectivamente, da esquerda e da direita e P o módulo da soma do peso do andaime com o peso de Miguel. Analisando-se essas informações, é CORRETO afirmar que: A) TE = TD e TE + TD = P. B) TE = TD e TE + TD > P. C) TE < TD e TE + TD = P. D) TE < TD e TE + TD > P.

26) Uma viga cilíndrica, homogênea, é construída em duas partes, com dois materiais distintos, de densidades dx = 18 g/cm3 e dy = 2 g/cm3 . A viga permanece em equilíbrio, na horizontal, quando suspensa na junção das duas partes, como ilustra a figura abaixo.

Com base nessas informações, é CORRETO afirmar que a razão adimensional entre as distâncias Q e P (Q/P) é igual a A) 18 B) 2 C) 9 D) 3

27) Um portão está fixo em um muro por duas dobradiças A e B, conforme mostra a figura, sendo P o peso do portão.

Caso um garoto se dependure no portão pela extremidade livre, e supondo que as reações máximas suportadas pelas dobradiças sejam iguais, (A) é mais provável que a dobradiça A arrebente primeiro que a B. (B) é mais provável que a dobradiça B arrebente primeiro que a A. (C) seguramente as dobradiças A e B arrebentarão simultaneamente. (D) nenhuma delas sofrerá qualquer esforço. (E) o portão quebraria ao meio, ou nada sofreria.

28) Na situação abaixo, o bloco 3 de massa igual a 6,0 kg está na eminência de deslizar. Supondo as cordas inextensíveis e sem massa e as roldanas também sem massa e sem atrito, quais são as massas dos blocos 1 e 2 se o coeficiente de atrito estático do plano horizontal para o bloco 3 é μe = 0,5?

b) P1 = 1,5 Kg P2 =√kg
c) P1 = 3,0 Kg P2 =√kg

a) P1 = 1,5 Kg P2 = 1,5 Kg; d) P1 = 2,0 Kg P2 = 4,0 Kg; e) P1 =√ Kg P2 =√ kg

Prof. Fernando Valentim- nandovalentim@yahoo.com.br

6 | Projeto Futuro Militar – w.futuromilitar.com.br

29) Considere o sistema ilustrado na figura abaixo. Supondo-se que tanto a massa da barra AB, como a da polia são desprezíveis, podemos afirmar que AB está em equilíbrio se:

a) m1L1 = (m2 + m3) L2 b) m1 (m2 + m3) L1 = 4 m2 m3 L2 c) m1 (m2 + m3) L1= 2 m2 m3 L2 d) 2m1 (m2 + m3) L1 = m2 m3 L2 e) m1 L2 = (m2 + m3) L1

30) Na figura tem-se uma barra de massa M e comprimento L homogênea, suspenso por dois fios, sem massa. Uma força FH, horizontal, pode provocar um deslocamento lateral da barra. Nestas condições, indique abaixo o gráfico que melhor representa a intensidade da força FH como função do ângulo .

b)

c) d) e) Nenhum dos gráficos acima.

31) Um corpo de peso está ⃗ suspenso por fios como indica a figura. A tensão T1 é dada por:

32) Uma chapa de aço de duas toneladas está suspensa por cabos flexíveis conforme mostra a figura ao lado, na qual R é uma roldana fixa e P o peso necessário para equilibrar a chapa na posição indicada. Desprezando-se as massas dos cabos, da roldana e o atrito no eixo da mesma, o valor de P deverá ser:

a) √ x 104 N b) 4 x 104 N

Prof. Fernando Valentim- nandovalentim@yahoo.com.br

7 | Projeto Futuro Militar – w.futuromilitar.com.br d) 1 x 104 N e) Nenhum dos valores acima.

indica a figura. Calcular o módulo da forçahorizontal .

3) Um bloco de peso ⃗ é sustentado por fios, como a) F = P senθ b) F = P cosθ c) F = P senθ cosθ d) F = P cotgθ e) F = P tg θ

34) A barra é uniforme, pesa 50,0 N e tem 10,0 de comprimento. O bloco D pesa 30,0 N e dista 8,0 de A. A distância entre os pontos de apoio da barra é AC = 7,0 m. Calcular a reação na extremidade A.

a) R = 14,0 N b) R = 7,0 N c) R = 20,0 N d) R = 10,0 N e) R = 8,0 N

35) Uma escada rígida de massa 15,0 kg está apoiada numa parede e no chão, lisos, e está impedida de deslizar por um cabo horizontal BC, conforme a figura. Uma pedra de dimensões pequenas e massa 5,0 kg é abandonada de uma altura de 1,80m acima do ponto A, onde sofre colisão elástica ricocheteando verticalmente. Sabendo-se que a duração do choque é de 0,03s e que a aceleração da gravidade é de 10,0 m.s-2 , pode-se afirmar que a tensão no cabo durante a colisão valerá:

a) 1 200 N b) 1 150 N c) 2 025 N d) 1 400 N e) 900 N 36) A figura mostra uma barra de 50 cm de comprimento e massa desprezível, suspensa por uma corda OQ, sustentando um peso de 3000 N no ponto indicado. Sabendo que a barra se apóia sem atrito nas paredes do vão, a razão entre a tensão na corda e a reação na parede no ponto S, no equilíbrio estático, é igual a:

a) 1,5 b) 3,0 c) 2,0 d) 1,0 e) 5,0

37) Na figura temos um cilindro de massa desprezível de raio r que pode girar sem atrito em tôrno do eixo que passa pelo centro O. Nos pontos P1 e P2 estão fixadas dois fios de massa também desprezível. Para que haja equilíbrio nas condições do esquema a relação entre as massas m1 e m2 é:

Prof. Fernando Valentim- nandovalentim@yahoo.com.br

8 | Projeto Futuro Militar – w.futuromilitar.com.br a) m1 = m2 b) 3m1 = 2√ m2 c) 3m2 =√ m1 d) m1 =√ m2 e) m2 = 2√ m1

38) É dado um pedaço de cartolina com a forma de um sapinho, cujo centro de gravidade situa-se no seu próprio corpo. A seguir, com o auxílio de massa de modelagem, fixamos uma moeda de 10 centavos em cada uma das patas dianteiras do sapinho. Apoiando-se o nariz do sapinho na extremidade de um lápis ele permanece em equilíbrio. Nestas condições, pode-se afirmar que o sapinho com as moedas permanece em equilíbrio estável porque o centro de gravidade do sistema:

(Parte 1 de 2)

Comentários