Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

Introdução ao Banco de Dados e SQL: Fundamentos e Características, Notas de estudo de Informática

Uma apostila sobre banco de dados e sql, servindo de introdução ao mundo de gerenciadores de banco de dados e da linguagem sql. O texto aborda conceitos básicos, como a importância de bancos de dados, as funções de administradores e projetistas, e as características de um sistema de gerenciamento de banco de dados (sgbd). Além disso, discute a importância de visões, segurança, desempenho, e a relação entre análise de sistemas e banco de dados.

Tipologia: Notas de estudo

2010

Compartilhado em 05/02/2010

gustavo-dias-11
gustavo-dias-11 🇧🇷

4.7

(7)

46 documentos

1 / 33

Documentos relacionados


Pré-visualização parcial do texto

Baixe Introdução ao Banco de Dados e SQL: Fundamentos e Características e outras Notas de estudo em PDF para Informática, somente na Docsity! Apostila de Banco de Dados e SQL Autores: Prof. Jorge Surian Prof. Luiz Nicochelli Introdução Devido a carência de literatura destinada ao ensino de Banco de Dados e SQL para estudantes, elaboramos a presente apostila, que não possue o intento de esgotar tão abrangente volume de informações, servindo tão somente para estabelecer um mínimo de conhecimentos destinados a introduzir o estudante no mundo dos Gerenciadores de Banco de dados e da Linguagem SQL. Banco de Dados Todos nós sabemos existirem gigantescas bases de dados gerenciando nossas vidas. De fato sabemos que nossa conta bancária faz parte de uma coleção imensa de contas bancárias de nosso banco. Nosso Título Eleitoral ou nosso Cadastro de Pessoa Física, certamente estão armazenados em Bancos de Dados colossais. Sabemos também que quando sacamos dinheiro no Caixa Eletrônico de nosso banco, nosso saldo e as movimentações existentes em nossa conta bancária já estão à nossa disposição. Nestas situações sabemos que existe uma necessidade em se realizar o armazenamento de uma série de informações que não se encontram efetivamente isoladas umas das outras, ou seja, existe uma ampla gama de dados que se referem a relacioamentos existentes entre as informações a serem manipuladas. Estes Bancos de Dados, além de manterem todo este volume de dados organizado, também devem permitir atualizações, inclusões e exclusões do volume de dados, sem nunca perder a consistência. E não podemos esquecer que na maioria das vezes estaremos lidando com acessos concorrentes a várias tabelas de nosso banco de dados, algumas vezes com mais de um acesso ao mesmo registro de uma mesma tabela! O fato de montarmos uma Mala Direta em um micro PC-XT com um drive já faz de nós um autor de um Banco de Dados? Claro que não! Um Banco de Dados é antes de mais nada uma coleção logicamente coerente de dados com determinada significação intrínseca. Em outras palavras um arquivo contendo uma série de dados de um cliente, um arquivo com dados aleatoriamente gerados e dois arquivos padrão dbf (dBase) que tem uma relação definida entre ambos, não pode ser considerada uma Base de Dados Real. Um Banco de Dados contém os dados dispostos numa ordem pré-determinada em função de um projeto de sistema, sempre para um propósito muito bem definido. Um Banco de Dados representará sempre aspectos do Mundo Real. Assim sendo uma Base de Dados (ou Banco de Dados, ou ainda BD) é uma fonte de onde poderemos extrair uma vasta gama de informações derivadas, que possui um nível de interação com eventos como o Mundo Real que representa. A forma mais comum de interação Usuário e Banco de Dados, dá-se através de sistemas específicos que por sua vez acessam o volume de informações geralmente através da linguagem SQL. Os Administradores de Banco de Dados (DBA) são responsáveis pelo controle ao acesso aos dados e pela coordenação da utilização do BD. Já os projetistas de Banco de Dados (DBP) são analistas que identificam os dados a serem armazenados em um Banco de Dados e pela forma como estes serão representados. Os Analistas e Programadores de Desenvolvimento, criam sistemas que acessam os dados da forma necessária ao Usuário Final, que é aquele que interage diretamente com o Banco de Dados. SGBD x GA Um SGBD - Sistema de Gerenciamento de Banco de Dados é uma coleção de programas que permitem ao usuário definir, construir e manipular Bases de Dados para as mais diversas finalidades. Um conceito que deverá ficar bastante claro inicialmente é o que envolve a separação clara entre os Gerenciadores de Base de Dados dos Gerenciadores de Arquivo. Sistemas baseados em "Banco de Dados" baseados em Btrieve e dBase (Fox e Clipper), podem no máximo simular as características típicas de um ambiente de Banco de Dados. As linguagens Delphi (utiliza opcionalmente o padrão dBase) e o VB (que utiliza o Access), recomendam a utilização de Banco de Dados reais, porém utilizam àqueles "Banco de Dados" que possuem algumas características de Bancos de Dados, mas possuem características típicas de Gerenciadores de Arquivo. Vamos definir algumas regras básicas e claras para um sistema de manipulação de dados ser considerado um SGBD. Fica implícito que se ao menos uma das características abaixo não estiver presente no nosso "candidato" a SGBD, este poderá ser um GA (Gerenciador de Arquivo) de altíssima qualidade, "quase" um SGBD, mas não um SGBD. Regra 1: Auto-Contenção- Um SGBD não contém apenas os dados em si, mas armazena completamente toda a descrição dos dados, seus relacionamentos e formas de acesso. Normalmente esta regra é chamada de Meta-Base de Dados. Em um GA, em algum momento ao menos, os programas aplicativos declaram estruturas (algo que ocorre tipicamente em C, COBOL e BASIC), ou geram os relacionamentos entre os arquivos (típicos do ambiente xBase). Por exemplo, quando você é obrigado a definir a forma do registro em seu programa, você não está lidando com um SGBD. Regra 2: Independência dos Dados- Quando as aplicações estiverem realmente imunes a mudanças na estrutura de armazenamento ou na estratégia de acesso aos dados, podemos dizer que esta regra foi atingida. Portanto, nenhuma definição dos dados deverá estar contida nos programas da aplicação. Quando você resolve criar uma nova forma de acesso, um novo índice, se precisar alterar o código de seu aplicativo, você não está lidando com um SGBD. Regra 3: Abstração dos Dados- Em um SGBD real é fornecida ao usuário somente uma representação conceitual dos dados, o que não inclui maiores detalhes sobre sua forma de armazenamento real. O chamado Modelo de Dados é um tipo de abstração utilizada para fornecer esta representação conceitual. Neste modelo, um esquema das tabelas, seus relacionamentos e suas chaves de acesso são exibidas ao usuário, porém nada é afirmado sobre a criação dos índices, ou como serão mantidos, ou qual a relação existente entre as tabelas que deverá ser mantida íntegra. Assim se você desejar inserir um pedido em um cliente inexistente e esta entrada não for automaticamente rejeitada, você não está lidando com um SGBD. Regra 4: Visões- Um SGBD deve permitir que cada usuário visualize os dados de forma diferente daquela existente previamente no Banco de Dados. Uma visão consiste de um subconjunto de dados do Banco de Dados, necessariamente derivados dos existentes no Banco de Dados, porém estes não deverão estar explicitamente armazenados. Portanto, toda vez que você é obrigado a replicar uma estrutura, para fins de acesso de forma diferenciada por outros aplicativos, você não está lidando com um SGBD. Regra 5: Transações- Um SGBD deve gerenciar completamente a integridade referencial definida em seu esquema, sem precisar em tempo algum, do auxílio do programa aplicativo. Desta forma exige-se que o banco de dados tenha ao menos uma instrução que permita a gravação de uma série modificações simultâneas e uma instrução capaz de cancelar um série modificações. Por exemplo, imaginemos que estejamos cadastrando um pedido para um cliente, que este deseje reservar 5 itens de nosso estoque, que estão disponíveis e portanto são reservados, porém existe um bloqueio financeiro (duplicatas em atraso) que impede a venda. A transação deverá ser desfeita com apenas uma instrução ao Banco de Dados, sem qualquer modificações suplementares nos dados. Caso você se obrigue a corrigir as reservas, através de acessos complentares, você não está lidando com um SGBD. Regra 6: Acesso Automático- Em um GA uma situação típica é o chamado Dead-Lock, o abraço mortal. Esta situação indesejável pode ocorrer toda vez que um usuário travou um registro em uma tabela e seu próximo passo será travar um resgistro em uma tabela relacionada à primeira, porém se este registro estiver previamente travado por outro usuário, o primeiro usuário ficará paralisado, pois, estará esperando o segundo usuário liberar o registro em uso, para que então possa travá-lo e prosseguir sua tarefa. Se por hipótese o segundo usuário necessitar travar o registro travado pelo primeiro usuário (!), afirmamos que ocorreu um abraço mortal, pois cada usuário travou um registro e precisa travar um outro, justamente o registro anteriormente travado pelo outro! Imaginemos um caso onde o responsável pelos pedidos acabou de travar o Registro Item de Pedido, e, necessita travar um registro no Cadastro de Produtos, para indicar uma nova reserva. Se concomitantemente estiver sendo realizada uma tarefa de atualização de pendências na Tabela de Itens, e para tanto, previamente este segundo usuário travou a Tabela de Produtos, temos a ocorrência do abraço mortal. Se a responsabilidade de evitar esta ocorrência for responsabilidade da aplicação, você não está lidando com um SGBD. Conclusão: Um SGBD deve obedecer INTEGRALMENTE as seis regras acima. Em caso contrário estaremos diante de um GA ou de um "quase" SGBD. O Backup em tempo de execução, é outra característica sempre disponível, porém temos aplicações que invariavelmente são comprometidas por falhas de hardware, e outras, que o mesmo tipo de falha não causa perda alguma de dados ou de integridade. Novamente, cada Banco de Dados tem esta característica melhor ou pior implementada, cabendo ao Administrador de Banco de Dados escolher aquele que lhe oferecer mais segurança. Devemos ressaltar ainda, que podemos ter um Banco de Dados Modelo A, que respeite integralmente as regras básicas e disponha de todas as características apresentadas, enquanto um Modelo B que apesar de respeitar as regras básicas, não suporte uma ou outra característica desejável, mas tenha um desempenho excelente, enquanto o Modelo A seja apenas razoável no quesito desempenho, nos levará seguramente a escolher o Modelo B como sendo o ganhador para nossa instalação! Isto ocorre pois, na prática, todo usuário deseja um tempo de resposta muito pequeno. O chamado “prazo de entrega” muito comum em Bancos de Dados operando nos limites de sua capacidade, ou nos casos onde o hardware está muito desatualizado, é fonte de inúmeros problemas para o pessoal de informática. Neste caso é melhor abrirmos mão de uma Interface Amigável, de um Gerenciamente Automático de Backups ou ainda de outras características que não julgarmos fundamentais, para nos livrarmos do problema típico de ambiente extremamente comprometido, por má performance do Banco de Dados. A escolha do Banco de Dados da empresa, portanto é uma decisão muito delicada, na medida em que está irá acarretar troca de aplicativos e troca de hardware. Os investimentos diretamente aplicados no Banco de Dados, costumam ser infinitamente menores do que aqueles a serem aplicados na empresa, visando sua perfeita adeqüação ao novo SGBD. Esta decisão, sempre que possível, deve ser tomada por especialistas em Banco de Dados, com profundos conhecimentos de Análise de Sistemas, de Banco de Dados e de Software de Gerenciamento de Bases de Dados, de forma a evitar que a empresa escolha um Banco de Dados inadequado aos seus propósitos, e que pouco tempo depois, seja obrigada a perder todos investimento realizado em Software e Hardware. Arquitetura de um SGBD Estrutura Podemos dizer que o Banco de Dados tem um Nível Interno, onde é descrita a estrutura de armazenamento físico dos dados, um Nível Intermediário, onde temos a descrição lógica dos dados e um Nível Externo onde são descritas as visões para grupos de usuários. Não podemos deixar de lembrar ainda que o Banco de Dados garante a Independência Lógica e Física dos Dados, portanto podemos alterar o esquema conceitual dos dados, sem alterar as visões dos usuários ou mesmo alterar o esquema interno, sem contudo alterar seu esquema conceitual. Modelos de Dados O Modelo de Dados é basicamente um conjunto de conceitos utilizados para descrever um Banco de Dados. Não existe uma única forma de representação deste modelo, porém qualquer forma que permita a correta compreensão das estruturas de dados compreendidas no Banco de Dados, pode ser considerada adequada. Vamos descrever sucintamente este modelo, pois estes serão objetos de outras disciplinas: Modelo Orientado ao Registro: São modelos que representam esquematicamente as estruturas das tabelas de forma bastante próxima a existente fisicamente. Basicamente são apresentados os registros de cada tabela (inclusive seus campos) e seus relacionamentos elementares. O Modelo Relacional, o Modelo de Rede e o Hierárquico são exemplos deste tipo de representação. Modelo Semântico: São modelos onde existe uma representação explícita das entidades e relacionamentos. O Modelo Entidade-Relacionamento e o Funcional, são exemplos deste tipo de abordagem. Modelo Orientado ao Objeto: São modelos que procuram representar as informações através dos concietos típicos da Programação Orientada ao Objeto, utilizando o conceito de Classes que irão conter os objetos. Citamos os Modelos O2 e o de Representação de Objetos como exemplos típicos desta abordagem. O conceito de instância, sempre muito presente, poderia ser definido como sendo o conjunto de dados que definem claramente um Banco de Dados em deteminado instante. Devemos entender então o Banco de Dados como sendo não apenas um conjunto de dados digitados, mas também todo o esquema e regras armazenada e controladas pelo SGBD. Em outras palavras, podemos dizer que os SGBD, vieram para eliminar todo o trabalho que anteriormente um programador de aplicação realizava controlando o acesso, integridade e redundância dos dados. Componentes de um Banco de Dados Um Banco de Dados é composto pelas seguintes partes: Gerenciador de Acesso ao Disco: O SGBD utiliza o Sistema Operacional para acessar os dados armazenados em disco, controlando o acesso concorrente às tabelas do Banco de Dados. O Gerenciador controla todas as pesquisas queries) solicitadas pelos usuários no modo interativo, os acessos do compilador DML, os acessos feitos pelo Processador do Banco de Dados ao Dicionário de Dados e também aos próprios dados. O Compilador DDL (Data Definition Language) processa as definições do esquema do Banco de Dados, acessando quando necessário o Dicionário de Dados do Banco de Dados. O Dicionário de Dados contém o esquema do Banco de Dados, suas tabelas, índices, forma de acesso e relacionamentos existentes. O Processador do Banco de Dados manipula requisições à própria Base de Dados em tempo de execução. É o responsável pelas atualizações e integridade da Base de Dados. O Processador de Pesquisas (queries) dos usuários, analisa as solicitações, e se estas forem consistentes, aciona o Processador do Banco de Dados para acesso efetivo aos dados. As aplicações fazem seus acessos ao pré-compilador DML da linguagem hospedeira, que os envia ao Compilador DML (Data Manipulation Language) onde são gerados os códigos de acesso ao Banco de Dados. Banco de Dados Hierárquicos Seguem o estilo de um organograma empresarial (Diretoria-Divisão-Seção-Setor) ou de biblioteca (Exata-Matemática- Algebra Linear-Vetores). Este modelo é capaz de representar este tipo de organização de forma direta, mas apresenta inconvenientes quando esta situação não aparece claramente com relações de hierarquia. O Exemplo a seguir (Folha de Pagamento) deve servir para esclarecer melhor o estilo deste modelo Fábrica Financeiro Comercial Injeção Extrusão Pagar Receber Contábil Vendas Marketing Paulo Vinícius Vilma Sílvia Dagoberto Juracy Richard Pedro Carlos Ernesto Sandra Paula Pedrinho João Sabemos que Paulo é "filho" da Injeção que por sua vez é "filha" da Fábrica. Banco de Dados em Redes Neste modelos os dados são dispostos em registros, previamente classificados em classes que descrevem a estrutura de determinado tipo de registro. Os registros são descritos em relações de conjuntos onde são estabelecidas as ligações lógicas entre eles. O esquema abaixo representa este tipo de Ligação Fábrica #1 Nome Local ... Apontada Aponta_Início Aponta_Final Injeção #7 Nome Máquina ... Apontada (*1) Aponta_I(*15) Aponta_F(*18) #15 Paulo 28 (Idade) ... (*7) (*17) #18 João 25 ... (*17) (*7) Um confusão habitualmente verificada, diz respeito a confusão que existe entre o conceito do Modelo de Redes e o existente na matemática. No modelo de Redes temos sempre um elemento distitivo, o registro base e a partir dele são dispostos os demais registros. Temos sempre tipos de conjunto, que dispõe de três elementos, a saber: nome, tipo de registro pai e tipo de registro filho. Supondo um Registro contido no Arquivo de Disciplinas ministradas na Íbero, este seria um registro pai, na medida em que conteria a referência aos seus registros filhos (os alunos cursando aquela disciplina). As restrições impostas pelo Modelo de Redes podem ser descritas como de ordem de Entrada e de Existência. Em relação as restrições de entrada citamos a obrigatoriedade de cada novo registro estar conectado (ou apontado, como preferem os programadores C) ao conjunto indicado. Em relação a restrições de Existência podemos dizer que um componente de um tipo de registro pode existir de forma independente de outros desde que esteja conectado a algum outro registro fazendo parte de algum conjunto, ou sendo base de um novo conjunto. A identificação de um conjunto pode ser verificada através do esquema de ligação entre o registro pai e o registro filho, assim sendo, cada instância de conjunto apresenta um elemento de distinção, o tal registro pai, e os registros filhos devidamente ordenados, e portanto passíveis de serem acessados pelos seus elementos. Exemplo: Disciplina Tópicos Avançados e seus Alunos Registro de Disciplinas Informática Álvaro Maurício Cláudio Registro de Alunos O exemplo anterior representa uma instância de connjunto, no caso Disciplinas (Tópicos Avançados) e seus alunos (no caso Álvaro, Amorim e Cláudio). Banco de Dados Orientados ao Objeto Representam os dados como coleções que obedecem propriedades. São modelos geralmente conceituais dispondo de pouquíssimas aplicações reais. Neste Modelo não seria interessante a existência de uma tabela de funcionários e dentro dela alguma referência para cada registro, de forma a podermos saber onde (em que departamento) o funcionário está alocado. Um conjunto de regras disponibilizaria em separado os funcionários da fábrica, que no entanto estariam agrupados aos demais, para o sistema de folha de pagamento. Banco de Dados Universal Usa fortemente o conceito dos bancos de dados relacionais (ainda a serem vistos), no que concerne ao tratamento da informação dita caracter e muito do Modelo Orientado ao Objeto, no tocante ao tratamento de Imagens e Sons. É um dos assuntos top do momento, e será alvo de pesquisas na disciplina Tópicos Avançados - Atualidades, não sendo objeto imediato de nossa matéria. Banco de Dados Relacional O Modelo de Dados relacional representa os dados contidos em um Banco de Dados através de relações. Estas relações contém informações sobre as entidades representadas e seus relacionamentos. O Modelo Relacional, é claramente baseado no conceito de matrizes, onde as chamadas linhas (das matrizes) seriam os registros e as colunas (das matrizes) seriam os campos. Os nomes das tabelas e dos campos são de fundamental importância para nossa compreensão entre o que estamos armazenando, onde estamos armazenando e qual a relação existente entre os dados armazenados. Cada linha de nossa relação será chamada de TUPLA e cada coluna de nossa relação será chamada de ATRIBUTO. O conjunto de valores passíveis de serem assumidos por um atribruto, será intitulado de DOMÍNIO. Estes tópicos serão estudados cuidadosamente na disciplina Análise de Sistemas, que se incumbirá de apresentar cuidadosamente regras e normas para elaboração destes modelos. Em nosso curso, voltado à construção prática dos Bancos de Dados, e não de sua construção teóricas, apenas citaremos os aspectos básicos da construção teórica, de forma a facilitar ao estudante o relacionamento que existe entre Análise de Sistemas e Banco de Dados (uma das sub-disciplinas de Tópicos Avançados). O domínio consiste de um grupo de valores atômicos a partir dos quais um ou mais atributos retiram seus valores reais. Assim sendo Rio de Janeiro, Paraná e Pará são estados válidos para o Brasil, enquanto que Corrientes não é um estado válido (pertence a Argentina e não ao Brasil). O esquema de uma relação, nada mais são que os campos (colunas) existentes em uma tabela. Já a instância da relação consiste no conjunto de valores que cada atributo assume em um determinado instante. Portanto, os dados armazenados no Banco de Dados, são formados pelas instâncias das relações. As relações não podem ser duplicadas (não podem existir dois estados do Pará, no conjunto de estados brasileiros, por exemplo), a ordem de entrada de dados no Banco de Dados não deverá ter qualquer importância para as relações, no que concerne ao seu tratamento. Os atributos deverão ser atômicos, isto é, não são íveis de novas divisões. Chamaremos de Chave Primária ao Atributo que definir um resgistro, dentre uma coleção de registros. Chave Secundária (Terceária, etc), serão chaves que possibilitarão pesquisas ou ordenações alternativas, ou seja, diferentes da ordem criada a partir da chave primária ou da ordenação natural (física) da tabela. Chamaremos de Chave Composta, aquela chave que contém mais de um atributo (Por exemplo um cadastro ordenado alfabéticamente por Estado, Cidade e Nome do Cliente, necessitaria de uma chave composta que contivesse estes três atributos). Chamaremos de Chave Estrangeira, aquela chave que permitir a ligação lógica entre uma tabela (onde ela se encontra) com outra na qual ele é chave primária. Exemplo: Cidade Estado * CidCodi * EstCodi CidNome EstNome EstCodi (E) CidCodi e EstCodi, são chaves primárias respectivamente das tabelas Cidade e Estado, enquanto EstCodi é chave estrangeira na tabela de cidades. É precisamente por este campo (atributo, ou coluna), que será estabelecida a relação entre as tabelas Cidade-->Estado. SQL - Structured Query Language Introdução Quando os Bancos de Dados Relacionais estavam sendo desenvolvidos, foram criadas linguagens destinadas à sua manipulação. O Departamento de Pesquisas da IBM, desenvolveu a SQL como forma de interface para o sistema de BD relacional denominado SYSTEM R, início dos anos 70. Em 1986 o American National Standard Institute ( ANSI ), publicou um padrão SQL. A SQL estabeleceu-se como linguagem padrão de Banco de Dados Relacional. SQL apresenta uma série de comandos que permitem a definição dos dados, chamada de DDL (Data Definition Language), composta entre outros pelos comandos Create, que é destinado a criação do Banco de Dados, das Tabelas que o compõe, além das relações existentes entre as tabelas. Como exemplo de comandos da classe DDL temos os comandos Create, Alter e Drop. Os comandos da série DML (Data Manipulation Language), destinados a consultas, inserções, exclusões e alterações em um ou mais registros de uma ou mais tabelas de maneira simultânea. Como exemplo de comandos da classe DML temos os comandos Select, Insert, Update e Delete. Uma subclasse de comandos DML, a DCL (Data Control Language), dispõe de comandos de controle como Grant e Revoke. A Linguagem SQL tem como grandes virtudes sua capacidade de gerenciar índices, sem a necessidade de controle individualizado de índice corrente, algo muito comum nas linguagens de manipulação de dados do tipo registro a registro. Outra característica muito importante disponível em SQL é sua capacidade de construção de visões, que são formas de visualizarmos os dados na forma de listagens independente das tabelas e organização lógica dos dados. Outra característica interessante na linguagem SQL é a capacidade que dispomos de cancelar uma série de atualizações ou de as gravarmos, depois de iniciarmos uma seqüência de atualizações. Os comandos Commit e Rollback são responsáveis por estas facilidades. Devemos notar que a linguagem SQL consegue implementar estas soluções, somente pelo fato de estar baseada em Banco de Dados, que garantem por si mesmo a integridade das relações existentes entre as tabelas e seus índices. O Ambiente SQL Dispomos na Ibero de dois softwares destinados a linguagem SQL o ISQL e o WinSQL. O ISQL faz parte do pacote Ideo e permite construirmos Banco de Dados e tabelas diretamente pelo interpretador SQL, bem como acessarmos as Bases de Dados construídas no Ideo. O ISQL pode gerar Banco de Dados em seu ambiente proprietário (Watcom, hoje pertencente a Symantech) ou ainda nos consagrados Banco de Dados Oracle, SyBase, Ingres (Computer Associates), DB/2 (IBM) e Informix. Devido as origens do Ideo, o Banco de Dados SQL Server da Microsoft não é suportado, pois este Banco de Dados originou-se na microinformática e somente recentemente a Sapiens migrou seu software dos Ambientes Mainframe e Unix. Já o WinSQL é um ambiente inteiramente gráfico (ao contrário do ISQL que guarda fortes características do ambiente em Mainframe onde se originou), destinado ao apredinzado, portanto somente pode criar Banco de Dados em seu formato proprietário. Os comandos do WinSQL por serem visuais, não necessitam de maior esclarecimento além daqueles já contidos no Help. Já o ISQL apesar de possuir um Help bastante completo necessita, em nosso entender, de alguns esclarecimentos iniciais. Uma série de comandos do interpretador, que funciona de forma análoga àquela existente no dBase modo interativo, podem ser utilizados pelo usuário. Não obstante alguns comandos tenham nome idêntico a alguns comandos do DOS, devemos notar que muitas vezes sua sintaxe é bastante diversa daquele sistema operacional. Vamos destacar os seguintes comandos: \EDIT - Carrega o editor de bloco de notas do windows, o qual serve para a criação de arquivos para serem executados no Ideo. Ex: \edit teste.sql \CD - Mostra o diretório onde serão gravados os arquivos *.sql, *.dic *.dat. Permite alterar para determinado diretório (\CD DADO, fará com que o diretório corrente passe a ser C:\DADO, caso o diretório corrente fosse a raiz. Permite retornar ao diretório de nível inferior (\CD ..). Atenção este comando não é análogo ao Change Dir do DOS, na medida em que não permite a mudança direta de um subnível do diretório X para um diretório Y por exemplo. \DEFAULT <drive> - permite alterarmos o drive corrente. Ex: \DEFAULT F: \INCLUDE - Executa arquivos *.sql. O arquivo .sql deverá conter uma série de instruções SQL. Ex: \include teste.sql @< file > ; - Também executa arquivos *.sql. Ex: @teste.sql; EXIT; - Finaliza a sessão do ISQL. ou ( \QUIT ) COMMIT; - Confirma a transação. ROLLBACK; - Desfaz a transação. SHOW <tabela>; - Mostra os nomes das tabelas existentes em determinado banco de dados. Ex: SHOW tables; SHOW FIELDS FOR <tabela>; - Mostra os campos de determinada tabela. Ex: SHOW FIELDS FOR ATOR; SHOW INDEXES FOR <tabela>; - Lista de indices da tabela. SHOW RELATIONSHIPS FOR <tabela>; - Lista de relacionamentos da tabela. LIST <tabela> ; - Lista conteúdo da tabela. Estudo Dirigido Consideramos a linguagem SQL eminentemente prática, desta forma criamos um exmplo completo e propomos um exercício análogo, para tornar o estudante apto a manipular a linguagem SQL de maneira prática, em conformidade a filosofia eminentemente prática da Linguagem SQL. O exemplo apresentado nesta apostila já está disponível para sua utilização do diretório \IDEO\SQL, bastando para isso você copiar este exemplo para seu diretório e iniciar os testes de forma simultânea a sua apresentação pelo professor. É conveniente que você procure montar o exercício clássico (mundo), de forma a testar todos os conhecimentos adquiridos. Para tanto analise cuidadosamente o exercício proposto a seguir, e construa as relações, tabelas e queries adequadas ao final de cada exemplo. Exercício: Elabore Banco de Dados Mundo que contenha as seguintes tabelas: Continente, País e Cidade. Observe que uma cidade deverá pertencer exclusivamente a um país e que cada país deverá estar cadastrado no continente onde se localizar sua área mais importante. Assim não obstante grande parte do território russo fazer parte Ásia, a Rússia será considerada fazendo parte da Europa. Assim teríamos basicamente uma relação do tipo: Cidade --> País --> Continente Comando Alter Este comando permite inserir/eliminar atributos nas tabelas já existentes. Comando: ALTER TABLE < nome_tabela > ADD / DROP ( nome_atributo1 < tipo > [ NOT NULL ], nome_atributoN < tipo > [ NOT NULL ] ) ; Não existe nenhum comando SQL que permita eliminar algum atributo de uma relação já definida. Assim caso você desejar eliminar uma chave primária devidamente referenciada em outra tabela como chave estrangeira, ao invés de obter a eliminação do campo, obterá apenas um erro. Além do comando DROP que poderá eliminar uma tabela e suas relações, também podemos criar uma relação que tenha os atributos que se deseja, copiar-se a relação antiga sobre a nova e apgando-se então a relação que originalmente desejávamos eliminar. Ex: ALTER TABLE DEPT ( ADD DEPSALA DECIMAL (10,2) ); Exercício: Criar o Banco de Dados Mundo. Observar que se um continente for excluído, todos os países contidos em tal continente também o serão. Esta situação é conhecida como exclusão em Cascata. Observar também que a exclusão de um País eliminará todas as Cidades contidas no mesmo. Prática O Exemplo Trabalho já possue pequeno programa destinado a construção das tabelas contidas no Banco de Dados TRABALHO. Execute "trabalho.sql" de forma a obter as tabelas acima sem necessidade de digitar as instruções SQL de maneira interativa. Para tanto, você deverá copiar para seu diretório de trabalho o arquivo "trabalho.sql" do diretório \IDEO\SQL. Execute: "@trabalho;" que deverá: - Criar o banco de dados Trabalho. - Abrir o banco de dados Trabalho. - Criar as Tabelas, Indices e Relações contidas neste Banco de Dados. Posteriormente execute o comando "show tables", que deverá exibir as tabelas "dept" e "emp". E ao executar "show fields dept" serão exibidos os campos da tabela "dept". Copie e execute enchetra.sql do diretório \IDEO\SQL de forma a obter um conjunto de dados preparados para os testes a seguir apresentados. Na próxima etapa de nosso curso, estaremos realizando pesquisas utilizando a instrução Select. Julgamos conveniente que os estudantes populem seu exercício e realizem exercícios análogos aos apresentados na Base de Dados Trabalho no Banco de Dados Mundo. Parte II - Comandos de Consulta ao Esquema Devemos ressaltar que a linguagem SQL é utilizada tanto pelos profissionais responsáveis pelos dados, onde é ressaltada a figura do Administrador do Banco de Dados e dos Analistas de Dados, como também pelos desenvolvedores de Aplicações. Enquanto àqueles estão preocupados com o desempenho, integridade do Banco de Dados e utilizam toda gama de recusos disponíveis no SQL, estes estão preocupados apenas em "transformar dados em informações", portanto para os desenvolvedores costuma-se dizer que conhecer o "select" já basta. Em nosso curso enfatizaremos a importância de TODOS os comandos do SQL, mas sabemos de antemão que os professores responsáveis pelas linguagens IDEO, VB e Delphi, ressaltarão a preponderância da instrução "select", que será apresentada a seguir e não no final do curso de SQL como geralmente acontece, pelo fato de que diversas disciplinas necessitam especificamente deste comando, que passaremos a apresentar: 1) Seleção de todas os campos (ou colunas) da tabela de Departamentos. Resp: SELECT * FROM DEPT; O exemplo utiliza o coringa "*" para selecionar as colunas na ordem em que foram criadas. A instrução Select, como pudemos observar seleciona um grupo de registros de uma (ou mais) tabela(s). No caso a instrução From nos indica a necessidade de pesquisarmos tais dados apenas na tabela Dept. Where como base das Restrição de tuplas. A cláusula "where" corresponde ao operador restrição da álgebra relacional. Contém a condição que as tuplas devem obedecer a fim de serem listadas. Ela pode comparar valores em colunas, literais, expressões aritméticas ou funções. A seguir apresentamos operadores lógicos e complementares a serem utilizados nas expressões apresentadas em where. Operadores lógicos operador significado = igual a > maior que >= maior que ou igual a < menor que <= menor que ou igual a Exemplos: SELECT EMPNOME, EMPSERV FROM EMP WHERE DEPNUME > 10; SELECT EMPNOME, EMPSERV FROM EMP WHERE EMPSERV = 'GERENTE'; O conjunto de caracteres ou datas devem estar entre apóstrofes (‘) na cláusula "where". 2) Selecione todos os departamentos cujo orçamento mensal seja maior que 100000. Apresente o Nome de tal departamento e seu orçamento anual, que será obtido multiplicando-se o orçamento mensal por 12. Resp: Neste problema precisamos de uma expressão que é a combinação de um ou mais valores, operadores ou funções que resultarão em um valor. Esta expressão poderá conter nomes de colunas, valores numéricos, constantes e operadores aritméticos. SELECT DEPNOME, DEPORCA * 12 FROM DEPT WHERE DEPORCA > 100000; 3) Apresente a instrução anterior porém ao invés dos "feios" DepNome e DepOrca, os Títulos Departamento e Orçamento. Resp: Neste exemplo deveremos denominar colunas por apelidos. Os nomes das colunas mostradas por uma consulta, são geralmente os nomes existentes no Dicionário de Dado, porém geralmente estão armazenados na forma do mais puro "informatiquês", onde "todo mundo" sabe que CliCodi significa Código do Cliente. É possível (e provável) que o usuário desconheça estes símbolos, portanto devemos os apresentar dando apelidos às colunas "contaminadas" pelo informatiquês, que apesar de fundamental para os analistas, somente são vistos como enigmas para os usuários. SELECT DEPNOME "DEPARTAMENTO", DEPORCA * 12 "ORCAMENTO ANUAL" FROM DEPT WHERE DEPORCA > 100000; 4) Apresente todos os salários existentes na empresa, porém omita eventuais duplicidades. Resp: A cláusula Distinct elimina duplicidades, significando que somente relações distintas serão apresentadas como resultado de uma pesquisa. SELECT DISTINCT EMPSERV FROM EMP; 5) Apresente todos os dados dos empregados, considerando sua existência física diferente de sua existência lógica (ou seja devidamente inicializado). Resp: Desejamos um tratamento diferenciado para valores nulos. Qualquer coluna de uma tupla que não contenha informações é denominada de nula, portanto informação não existente. Isto não é o mesmo que "zero", pois zero é um número como outro qualquer, enquanto que um valor nulo utiliza um "byte" de armazenagem interna e são tratados de forma diferenciada pelo SQL. SELECT EMPNOME, EMPSALA + EMPCOMI FROM EMP; SELECT EMPNOME, NVL(EMPSALA,0) + NVL(EMPCOMI,0) FROM EMP; Obs: a função "NVL" é utilizada para converter valores nulos em zeros. Funções de Caracteres Lower - força caracteres maiúsculos aparecerem em minúsculos. Upper - força caracteres minúsculos aparecerem em maiúsculos. Concat(x,y)- concatena a string "x" com a string "y". Substring(x,y,str)- extrai um substring da string "str", começando em "x", e termina em "y". To_Char(num)- converte um valor numérico para uma string de caracteres. To_Date(char,fmt)- converte uma string caracter em uma data. ^Q - converte data para o formato apresentado. 12) Apresente o nome de todos os empregados em letras minúsculas. Resp: SELECT LOWER( EMPNOME ) FROM EMP; 13) Apresente o nome de todos os empregados (somente as 10 primeiras letras). Resp: SELECT SUBSTRING (1,10,EMPNOME) FROM EMP; 14) Apresente o nome de todos os empregados admitidos em 01/01/80. Resp: SELECT * FROM EMP WHERE EMPADMI = ^Q"DD-AAA-YYYY"("01-JAN-1980"); ou SELECT * FROM EMP WHERE EMPADMI = ^Q("01-JAN-1980"); Funções Agregadas (ou de Agrupamento) função retorno avg(n) média do valor n, ignorando nulos count(expr) vezes que o número da expr avalia para algo nao nulo max(expr) maior valor da expr min(expr) menor valor da expr sum(n) soma dos valores de n, ignorando nulos 15) Apresente a Média, o Maior, o Menor e também a Somatória dos Salários pagos aos empregados. Resp: SELECT AVG(EMPSALA) FROM EMP; SELECT MIN(EMPSALA) FROM EMP; SELECT MAX(EMPSALA) FROM EMP; SELECT SUM(EMPSALA) FROM EMP; Agrupamentos As funções de grupo operam sobre grupos de tuplas(linhas). Retornam resultados baseados em grupos de tuplas em vez de resultados de funções por tupla individual. A claúsula "group by" do comando "select" é utilizada para dividir tuplas em grupos menores. A cláusula "GROUP BY" pode ser usada para dividir as tuplas de uma tabela em grupos menores. As funções de grupo devolvem uma informação sumarizada para cada grupo. 16) Apresente a média de salário pagos por departamento. Resp: SELECT DUPNUME, AVG(EMPSALA) FROM EMP GROUP BY DEPNUME; Obs.: Qualquer coluna ou expressão na lista de seleção, que não for uma função agregada, deverá constar da claúsula "group by". Portanto é errado tentar impor uma "restrição" do tipo agregada na cláusula Where. Having A cláusula "HAVING" pode ser utilizada para especificar quais grupos deverão ser exibidos, portanto restringindo-os. 17) Retome o problema anterior, porém apresente resposta apenas para departamentos com mais de 10 empregados. Resp: SELECT DEPNUME, AVG(EMPSALA) FROM EMP GROUP BY DEPNUME HAVING COUNT(*) > 3; Obs.: A claúsula "group by" deve ser colocada antes da "having", pois os grupos são formados e as funções de grupos são calculadas antes de se resolver a cláusula "having". A cláusula "where" não pode ser utilizada para restringir grupos que deverão ser exibidos. Exemplificando ERRO típico - Restringindo Média Maior que 1000: SELECT DEPNUME, AVG(EMPSALA) FROM EMP WHERE AVG(SALARIO) > 1000 GROUP BY DEPNUME; ( Esta seleção está ERRADA! ) SELECT DEPNUME, AVG(EMPSALA) FROM EMP GROUP BY DEPNUME HAVING AVG(EMPSALA) > 1000; ( Seleção Adequada ) Seqüência no comando "Select": SELECT coluna(s) FROM tabela(s) WHERE condição(ões) da(s) tupla(s) GROUP BY condição(ões) do(s) grupo(s) de tupla(s) HAVING condição(ões) do(s) grupo(s) de tupla(s) ORDER BY coluna(s); A "sql" fará a seguinte avaliação: a) WHERE, para estabelecer tuplas individuais candidatas (não pode conter funções de grupo) b) GROUP BY, para fixar grupos. c) HAVING, para selecionar grupos para exibiçao. Equi-Junção ( Junção por igualdade ) O relacionamento existente entre tabelas é chamado de equi-junção, pois os valores de colunas das duas tabelas são iguais. A Equi-junção é possível apenas quando tivermos definido de forma adequada a chave estrangeira de uma tabela e sua referência a chave primária da tabela precedente. Apesar de admitir-se em alguns casos, a equi-junção de tabelas, sem a correspondência Chave Primária-Chave Estrangeira, recomendamos fortemente ao estudante não utilizar este tipo de construção, pois certamente em nenhum momento nos exemplos propostos em nossa disciplina ou nas disciplinas de Análise e Projeto de Sistemas, serão necessárias tais junções. 18) Listar Nomes de Empregados, Cargos e Nome do Departamento onde o empregado trabalha. Resp: Observemos que dois dos três dados solicitados estão na Tabela Emp, enquanto o outro dado está na Tabela Dept. Deveremos então acessar os dados restringindo convenientemente as relações existentes entre as tabelas. De fato sabemos que DEPNUME é chave primária da tabela de Departamentos e também é chave estrangeira da Tabela de Empregados. Portanto, este campo será o responsável pela equi-junção. SELECT A.EMPNOME, A.EMPSERV, B.DEPNOME FROM EMP A, DEPT B WHERE A.DEPNUME = B.DEPNUME; Inserções, Alterações e Exclusões Uma linguagem direcionada a extração de informações de um conjunto de dados, em tese não deveria incorporar comandos de manipulação dos dados. Devemos observar contudo que a mera existência de uma linguagem padronizada para acesso aos dados "convidava" os desenvolvedores a aderirem a uma linguagem "padrão" de manipulação de tabelas. Naturalmente cada desenvolvedor coloca "um algo mais" em seu SQL (SQL PLUS, SQL *, ISQL, e toda sorte de nomenclaturas), por um lado desvirtuando os objetivos da linguagem (padronização absoluta), mas em contrapartida otimiza os acessos ao seu banco de dados e por maior que sejam estas mudanças, jamais são tão importantes que impeçam que um programador versado em SQL tenha grandes dificuldades em se adaptar ao padrão de determinada implementação. De fato as diferenças entre o SQL da Sybase, Oracle, Microsoft, são muito menores dos que as existentes entre o C, o BASIC e o Pascal, que são chamadas de linguagens "irmãs", pois todas originam-se conceitualmente no FORTRAN. Podemos observar que todas as três linguagens mencionadas possuem estruturas de controle tipo "para" (for), "enquanto" (while) e repita (do..while, repeat..until). Todas trabalham com blocos de instrução, todas tem regras semelhantes para declaração de variáveis e todas usam comandos de tomada decisão baseadas em instruções do tipo "se" ou "caso", porém apesar de tantas semelhanças (sic), é praticamente impossível que um programador excelente em uma linguagem consiga rapidamente ser excelente em outra linguagem do grupo. Poderíamos arriscar a dizer que um excelente programador C que utilize a implementação da Symantech terá que passar por um breve período de adaptação para adaptar-se ao C da Microsoft. O que ocorreria então se este programador tiver que adaptar-se ao Delphi (Pascal) da Borland? De forma alguma o mesmo ocorrerá com o especialista em SQL ao ter que migrar do Banco de Dados X para o Banco de Dados Y. Naturalmente existirá a necessidade de aprendizado, mas este programador poderá ir adaptando-se aos poucos sem precisar ser retreinado, o que é um aspecto extremamente vantajoso para as empresas. Inserir (Insert) INSERT INTO <tabela> [<campos>] [VALUES <valores>] Ex: INSERT INTO DEPT; Possibilita a inserção de registros de forma interativa. INSERT INTO DEPT (DEPNUME,DEPNOME,DEPLOCA) VALUES (70,"PRODUCAO","RIO DE JANEIRO"); Possibilita a inserção de registros em tabelas sem digitação dos dados. Atualizar (Update) UPDATE <tabela> SET <campo> = <expressão> [WHERE <condição>]; Ex: UPDATE EMP SET EMPSALA = EMPSALA* 1.2 WHERE EMPSALA< 1000; Excluir (Delete) DELETE FROM <tabela> [WHERE <condição>]; Ex: DELETE FROM emp WHERE EMPSALA > 5000; Transações Muitas vezes gostaríamos que determinado processo, caso fosse abortado por qualquer motivo, pudesse ser inteiramente cancelado. Imaginemos por exemplo um usuário digitando um pedido. Imaginemos ainda que o sistema possa reservar cada item solicitado de maneira "on line", ou seja ao mesmo tempo em que estou digitando a quantidade o sistema já "empenhe" uma quantidade equivalente no estoque. Imaginemos ainda que o sistema deve cancelar todas as operações se apenas um dos itens não puder ser atendido. Grande problema, caso não pudéssemos anular todos os processos a partir de determinada condição. Vamos simular tal ocorrência com nosso banco de dados EMP. Imaginemos que ao invés de digitarmos DELETE FROM emp WHERE salario > 5000; tivéssemos digitado DELETE FROM emp WHERE salario > 500; Ao invés de eliminarmos 2 registros, praticamente teríamos eliminado o banco de dados todo. Para evitarmos que um erro de digitação, ou um processo iniciado porém sem condição de ser completado integralmente comprometa todos nossos dados podemos criar uma transação que nos assegurará que nossos testes sejam bem sucedidos ou cancelados sem comprometer nossos dados. begin transaction; delete from emp where salario > 500; if SQL_RECORDCOUNT > 20 THEN; ROLLBACK TRASACTION; else COMMIT; endif; end transaction; Visões Uma visão consiste basicamente de uma tabela derivada de outras tabelas. Considerando o exemplo TRABALHO, poderíamos criar uma visão baseada na Tabela de Empregados (EMP) e na Tabela de Departamentos (DEPT) onde tivéssemos somente os Nomes dos Funcionários e os Departamenos nos quais estes trabalhassem. Teríamos algo assemelhado ao abaixo representado CREATE VIEW EMP_DEP AS SELECT E.EMPNOME, D.DEPNOME FROM EMP E, DEPT D WHERE E.DEPNUME = D.DEPNUME; Devemos observar que: 1- Uma visão definida sobre uma única tabela somente será atualizável se os atributos da tal visão contiverem a chave primária de tal tabela. 2- Visões sobre várias tabelas não são passíveis de atualizações. 3- Visões que se utilizam de funções de agrupamentos, também não poderão ser atualizadas. PARTE III - Relatórios Comando: REPORT DISTINCT / UNIQUE [ atributo(s) ] REPORTTOP PAGETOP TOP DETAIL NONE BOTTOM PAGEBOTTOM REPORTBOTTOM FROM [ tabela(s) ] [ WHERE clausula-where ] [ GROUP BY clausula-grupo ] [ ORDER BY clausula-order by ]; Como exemplo converteremos um simples Select em um Report, temos: SELECT EMPNOME FROM EMP WHERE DEPNUME = 1000; REPORT DETAIL EMPNOME WHERE DEPNUME = 1000; Podemos direcionar a saida de um relatório tanto para um arquivo como para uma impressora. Para um arquivo: REPORT ON “RELAT.DAT” ... Para uma impressora: REPORT ON LP:” ... Agora incrementando um report temos: REPORT REPORTTOP COL 10, “*** RELATORIO DE FUNCIONARIOS *** “, TODAY %Q”DD/MM/YY”, SKIP, COL 10, “=================================“, SKIP 2 DETAIL COL 10, NOME %C22, SALARIO %FS, ADMISSAO %Q”DD/MM/YY” REPORTBOTTOM COL 10, “=================================“, SKIP, COL 20, “TOTAL:”, TOTAL(SALARIO) FROM EMP ORDER BY NOME; Onde: REPORTTOP - O que sera impresso no topo do relatório. PAGETOP - Impresso em cada topo de pagina. TOP - Impresso em cada Topo do Sort-Grupo do relatório. DETAIL - O que sera impresso em cada linha. NONE - Se não tiver resultado o select, não sera impresso o relatório. BOTTOM - Impresso em cada Bottom do Sort-Grupo do relatório PAGEBOTTOM - O que sera impresso no rodapé de cada pagina. REPORTBOTTOM - O que sera impresso no rodape do relatório. Formatos: %C - caracter %D - data y - ano, n - mes numérico, a - mes alfanumérico,
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved