Qualidade da Água - CETESB

Qualidade da Água - CETESB

(Parte 2 de 5)

As concentrações de cromo em água doce são muito baixas, normalmente inferiores a 1 µg/L. É comumente utilizado em aplicações industriais e domésticas, como na produção de alumínio anodizado, aço inoxidável, tintas, pigmentos, explosivos, papel, fotografia. Na forma trivalente o cromo é essencial ao metabolismo humano e, sua carência, causa doenças. Na forma hexavalente é tóxico e cancerígeno. Os limites máximos são estabelecidos basicamente em função do cromo hexavalente.

O DDT técnico é principalmente composto pelo isômero p,p' e sua estrutura permite diferentes formas de isômeros, como o,p'-DDT. É um inseticida persistente que tem seu uso restrito ou banido em vários países, exceto para campanhas de saúde pública no controle de doenças transmitidas por insetos.

O DDT e seus metabólitos podem ser transportados de um meio para outro, no ambiente, por processos de solubilização, adsorção, bioacumulação ou volatilização. Na superfície do solo ocorre a foto-oxidação do DDT, sendo a fotodesclorinação a principal reação, que acontece em dois estágios: rápida redução do cloro alifático e lenta redução do cloro aromático. A reação tem como produtos primários o DDE, o D e o ácido clorídrico. Na água, a maior parte do DDT encontra-se firmemente ligada a partículas e assim, permanece, indo depositar-se no leito de rios e mares.

O DDT, DDE e D são altamente lipossolúveis. Esta propriedade, aliada à meia-vida extremamente longa, tem resultado em bioacumulação, onde os níveis presentes nos organismos excedem aqueles encontrados no ambiente circundante. O grau de acumulação varia com a espécie, duração da exposição, concentração da substância no meio e as condições ambientais. Quando presente na água, o DDT é bioconcentrado no plâncton marinho e de água doce, em insetos, moluscos, outros invertebrados e peixes.

Tipicamente, a exposição humana e animal não ocorre apenas ao DDT mas sim a uma mistura dos três compostos. Isto porque DDE e D aparecem como impurezas do DDT técnico, são produtos de degradação ambiental e são produzidos no processo de biotransformação do DDT. A via digestiva é considerada a mais significativa via de entrada do DDT no organismo humano, devido ao consumo de alimentos ou uso de utensílios contaminados. Os principais efeitos do DDT são: neurotoxicidade, hepatoxicidade, efeitos metabólicos e efeitos reprodutivos e câncer. Nos seres humanos, como em outras espécies, o DDT se biotransforma em DDE, que é acumulado mais facilmente que o DDT.

Demanda Bioquímica de Oxigênio (DBO5,20)

A DBO5,20 de uma água é a quantidade de oxigênio necessária para oxidar a matéria orgânica por decomposição microbiana aeróbia para uma forma inorgânica estável. A DBO5,20 é normalmente considerada como a quantidade de oxigênio consumido durante um determinado período de tempo, numa temperatura de incubação específica. Um período de tempo de 5 dias numa temperatura de incubação de 20°C é freqüentemente usado e referido como DBO5,20. Na figura a seguir sintetiza-se o fenômeno da degradação biológica de compostos que ocorre nas águas naturais, que também se procura reproduzir sob condições controladas nas estações de tratamento de esgotos e, particularmente durante a análise da DBO5,20.

Metabolismo de microrganismos heterotróficos

Neste esquema, apresenta-se o metabolismo dos microrganismos heterotróficos, em que os compostos orgânicos biodegradáveis são transformados em produtos finais estáveis ou mineralizados, tais como água, gás carbônico, sulfatos, fosfatos, amônia, nitratos, etc. Nesse processo há consumo de oxigênio da água e liberação da energia contida nas ligações químicas das moléculas decompostas. Os microrganismos desempenham este importante papel no tratamento de esgotos pois necessitam desta energia liberada, além de outros nutrientes que por ventura não estejam presentes em quantidades suficientes nos despejos, para exercer suas funções celulares tais como reprodução e locomoção, o que genericamente se denomina síntese celular. Quando passa a ocorrer insuficiência de nutrientes no meio, os microrganismos sobreviventes passam a se alimentar do material das células que têm a membrana celular rompida. Este processo se denomina respiração endógena. Finalmente, há neste circuito, compostos que os microrganismos são incapazes de produzir enzimas que possam romper suas ligações químicas, permanecendo inalterados. Ao conjunto destes compostos dá-se o nome de resíduo não biodegradável ou recalcitrante.

Pelo fato de a DBO5,20 somente medir a quantidade de oxigênio consumido num teste padronizado, não indica a presença de matéria não biodegradável, nem leva em consideração o efeito tóxico ou inibidor de materiais sobre a atividade microbiana.

Os maiores aumentos em termos de DBO5,20, num corpo d'água, são provocados por despejos de origem predominantemente orgânica. A presença de um alto teor de matéria orgânica pode induzir à completa extinção do oxigênio na água, provocando o desaparecimento de peixes e outras formas de vida aquática.

Um elevado valor da DBO5,20 pode indicar um incremento da microflora presente e interferir no equilíbrio da vida aquática, além de produzir sabores e odores desagradáveis e, ainda, pode obstruir os filtros de areia utilizados nas estações de tratamento de água.

No campo do tratamento de esgotos, a DBO5,20 é um parâmetro importante no controle das eficiências das estações, tanto de tratamentos biológicos aeróbios e anaeróbios, bem como físico- químicos (embora de fato ocorra demanda de oxigênio apenas nos processos aeróbios, a demanda "potencial" pode ser medida à entrada e à saída de qualquer tipo de tratamento). Na legislação do

Estado de São Paulo, o Decreto Estadual n.º 8468, a DBO5,20 de cinco dias é padrão de emissão de esgotos diretamente nos corpos d'água, sendo exigidos ou uma DBO5,20 máxima de 60 mg/L ou uma eficiência global mínima do processo de tratamento na remoção de DBO5,20 igual a 80%. Este último critério favorece aos efluentes industriais concentrados, que podem ser lançados com valores de DBO5,20 ainda altos, mesmo removida acima de 80%.

A carga de DBO5,20, expressa em Kg/dia é um parâmetro fundamental no projeto das estações de tratamento biológico. Dela resultam as principais características do sistema de tratamento como áreas e volumes de tanques, potências de aeradores, etc. A carga de DBO5,20 pode ser obtida do produto da vazão pela concentração de DBO5,20. Por exemplo, em uma indústria já existente que se pretenda instalar um sistema de tratamento, pode-se estabelecer um programa de medições de vazão e de análises de DBO5,20, obtendo-se a carga através do produto dos valores médios. O mesmo pode ser feito em um sistema de esgotos sanitários já implantado. Na impossibilidade, costuma-se recorrer a valores unitários estimativos. No caso de esgotos sanitários, é tradicional no Brasil a adoção de uma contribuição "per capita" de DBO5,20 de 54 g/hab.dia. Porém, há a necessidade de melhor definição deste parâmetro através de determinações de cargas de DBO5,20 em bacias de esgotamento com população conhecida. No caso dos efluentes industriais, também costuma-se estabelecer contribuições unitárias de

DBO5,20 em função de unidades de massa ou de volume de produto processado. Na tabela a seguir são apresentados valores típicos de concentração e contribuição unitária de DBO5,20.

Demanda Química de Oxigênio (DQO)

É a quantidade de oxigênio necessária para oxidação da matéria orgânica através de um agente químico. Os valores da DQO normalmente são maiores que os da DBO5,20, sendo o teste realizado num prazo menor. O aumento da concentração de DQO num corpo d'água se deve principalmente a despejos de origem industrial. A DQO é um parâmetro indispensável nos estudos de caracterização de esgotos sanitários e de efluentes industriais. A DQO é muito útil quando utilizada conjuntamente com a DBO5,20 para observar a biodegradabilidade de despejos. Sabe-se que o poder de oxidação do dicromato de potássio é maior do que o que resulta mediante a ação de microrganismos, exceto raríssimos casos como hidrocarbonetos aromáticos e piridina. Desta forma os resultados da DQO de uma amostra são superiores aos de

DBO5,20. Como na DBO5,20 mede-se apenas a fração biodegradável, quanto mais este valor se aproximar da DQO significa que mais facilmente biodegradável será o efluente. É comum aplicar-se tratamentos biológicos para efluentes com relações DQO/DBO5,20 de 3/1, por exemplo. Mas valores muito elevados desta relação indicam grandes possibilidades de insucesso, uma vez que a fração biodegradável torna- se pequena, tendo-se ainda o tratamento biológico prejudicado pelo efeito tóxico sobre os microrganismos exercido pela fração não biodegradável.

A DQO tem se demonstrado um parâmetro bastante eficiente no controle de sistemas de tratamentos anaeróbios de esgotos sanitários e de efluentes industriais. Após o impulso que estes sistemas tiveram em seus desenvolvimentos a partir da década de 70, quando novos modelos de reatores foram criados e muitos estudos foram conduzidos, observa-se o uso prioritário da DQO para o controle das cargas aplicadas e das eficiências obtidas. A DBO5,20 nestes casos tem sido utilizada apenas como parâmetro secundário, mais para se verificar o atendimento à legislação, uma vez que tanto a legislação federal quanto a do Estado de São Paulo não incluem a DQO. Parece que os sólidos carreados dos reatores anaeróbios devido à ascensão das bolhas de gás produzidas ou devido ao escoamento, trazem maiores desvios nos resultados de DBO5,20 do que nos de DQO. Outro uso importante que se faz da DQO é para a previsão das diluições das amostras na análise de DBO5,20. Como o valor da DQO é superior, e pode ser obtido no mesmo dia da coleta, poderá ser utilizado para balizar as diluições. No entanto, deve-se observar que as relações DQO/DBO5,20 são diferentes para os diversos efluentes e que, para um mesmo efluente, a relação se altera mediante tratamento, especialmente o biológico. Desta forma, um efluente bruto que apresente relação

DQO/DBO5,20 igual a 3/1, poderá, por exemplo, apresentar relação da ordem de 10/1 após tratamento biológico, que atua em maior extensão sobre a DBO5,20.

Fenóis

Os fenóis e seus derivados aparecem nas águas naturais através das descargas de efluentes industriais. Indústrias de processamento da borracha, de colas e adesivos, de resinas impregnantes, de componentes elétricos (plásticos) e as siderúrgicas, entre outras, são responsáveis pela presença de fenóis nas águas naturais.

Os fenóis são tóxicos ao homem, aos organismos aquáticos e aos microrganismos que tomam parte dos sistemas de tratamento de esgotos sanitários e de efluentes industriais. Em sistemas de lodos ativados, concentrações de fenóis na faixa de 50 a 200 mg/L trazem inibição, sendo que 40 mg/L são suficientes para a inibição da nitrificação. Na digestão anaeróbia, 100 a 200 mg/L de fenóis também provocam inibição. Estudos recentes têm demonstrado que, sob processo de aclimatação, concentrações de fenol superiores a 1000 mg/L podem ser admitidas em sistemas de lodos ativados. Em pesquisas em que o reator biológico foi alimentado com cargas decrescentes de esgoto sanitário e com carga constante de efluente sintético em que o único tipo de substrato orgânico era o fenol puro, conseguiu-se ao final a estabilidade do reator alimentado somente com o efluente sintético contendo 1000 mg/L de fenol.

No Estado de São Paulo, existem muitas indústrias contendo efluentes fenólicos ligados à rede pública de coleta de esgotos. Para isso, devem sofrer tratamento na própria unidade industrial de modo a reduzir o índice de fenóis para abaixo de 5,0 mg/L (Artigo 19-A do Decreto Estadual n.º 8468/76). O índice de fenóis constitui também padrão de emissão de esgotos diretamente no corpo receptor, sendo estipulado o limite de 0,5 mg/L tanto pela legislação do Estado de São Paulo (Artigo 18 do Decreto Estadual n.º 8468/76) quanto pela Legislação Federal (Artigo 21 da Resolução n.º 20/86 do CONAMA).

Nas águas naturais, os padrões para os compostos fenólicos são bastante restritivos, tanto na legislação federal quanto na do Estado de São Paulo. Nas águas tratadas, os fenóis reagem com o cloro livre formando os clorofenóis que produzem sabor e odor na água. Por este motivo, os fenóis constituemse em padrão de potabilidade, sendo imposto o limite máximo bastante restritivo de 0,001 mg/L pela Portaria 1469 do Ministério da Saúde.

Ferro Total

O ferro aparece principalmente em águas subterrâneas devido à dissolução do minério pelo gás carbônico da água, conforme a reação:

Fe + CO2 + ½ O2 à FeCO3 O carbonato ferroso é solúvel e frequentemente é encontrado em águas de poços contendo elevados níveis de concentração de ferro. Nas águas superficiais, o nível de ferro aumenta nas estações chuvosas devido ao carreamento de solos e a ocorrência de processos de erosão das margens. Também poderá ser importante a contribuição devida à efluentes industriais, pois muitas indústrias metalúrgicas desenvolvem atividades de remoção da camada oxidada (ferrugem) das peças antes de seu uso, processo conhecido por decapagem, que normalmente é procedida através da passagem da peça em banho ácido.

Nas águas tratadas para abastecimento público, o emprego de coagulantes a base de ferro provoca elevação em seu teor.

O ferro, apesar de não se constituir em um tóxico, traz diversos problemas para o abastecimento público de água. Confere cor e sabor à água, provocando manchas em roupas e utensílios sanitários. Também traz o problema do desenvolvimento de depósitos em canalizações e de ferro-bactérias, provocando a contaminação biológica da água na própria rede de distribuição. Por estes motivos, o ferro constitui-se em padrão de potabilidade, tendo sido estabelecida a concentração limite de 0,3 mg/L na Portaria 1469 do Ministério da Saúde. É também padrão de emissão de esgotos e de classificação das águas naturais. No Estado de São Paulo estabelece-se o limite de 15 mg/L para concentração de ferro solúvel em efluentes descarregados na rede coletora de esgotos seguidas de tratamento (Decreto no 8468).

No tratamento de águas para abastecimento, deve-se destacar a influência da presença de ferro na etapa de coagulação e floculação. As águas que contêm ferro caracterizam-se por apresentar cor elevada e turbidez baixa. Os flocos formados geralmente são pequenos, ditos "pontuais", com velocidades de sedimentação muito baixa. Em muitas estações de tratamento de água este problema só é resolvido mediante a aplicação de cloro, a chamada pré-cloração. Através da oxidação do ferro pelo cloro, os flocos tornam-se maiores e a estação passa a apresentar um funcionamento aceitável. No entanto, é conceito clássico que, por outro lado, a pré-cloração de águas deve ser evitada, pois em caso da existência de certos compostos orgânicos chamados precursores, o cloro reage com eles formando trihalometanos, associados ao desenvolvimento do câncer.

Fluoreto

O flúor é o mais eletronegativo de todos os elementos químicos, tão reativo que nunca é encontrado em sua forma elementar na natureza, sendo normalmente encontrado na sua forma combinada como fluoreto. O flúor é o 17º elemento em abundância na crosta terrestre representando de

0,06 a 0,9% e ocorrendo principalmente na forma de fluorita (CaF ), Fluoroapatita (C (PO ) ) e criolita

(Na AlF ). Porém, para que haja disponibilidade de fluoreto livre, ou seja, disponível biologicamente, são necessárias condições ideais de solo, presença de outros minerais ou outros componentes químicos e água. Traços de fluoreto são normalmente encontrados em águas naturais e concentrações elevadas geralmente estão associadas com fontes subterrâneas. Em locais onde existem minerais ricos em flúor, tais como próximos a montanhas altas ou áreas com depósitos geológicos de origem marinha, concentrações de até 10 mg/L ou mais são encontradas. A maior concentração de flúor registrada em águas naturais é de 2.800 mg/L, no Quênia.

O fluossilicato de sódio era o composto mais utilizado, tendo sido substituído pelo ácido fluossilícico em diversas estações de tratamento de água. Apesar da corrosividade do ácido, o fato de se apresentar na forma líquida facilita sua aplicação e o controle seguro das dosagens, condição fundamental para a fluoretação. O fluoreto de sódio é muito caro e o fluoreto de cálcio, pouco solúvel.

Alguns efluentes industriais também descarregam fluoreto nas águas naturais. São os casos das indústrias de vidro e de fios condutores de eletricidade.

No ar, a presença de fluoreto deve-se principalmente a emissões industriais e sua concentração varia com o tipo de atividade. Estima-se um valor de exposição abaixo de 1µg/L, pouco significativo em relação à quantidade ingerida através da água e de alimentos.

Todos os alimentos possuem ao menos traços de fluoreto. Os vegetais possuem concentrações maiores principalmente devido à absorção da água e do solo. Alguns alimentos tais como peixes, certos vegetais e chá, possuem altas concentrações de fluoreto. O uso da água fluoretada na preparação de alimentos pode dobrar a quantidade de fluoreto presente. Estima-se uma quantidade diária ingerida de 0,2 a 3,1 mg para adultos e 0,5 mg para crianças de 1 a 3 anos.

Outras fontes de fluoreto são as pastas de dente, gomas de mascar, vitaminas e remédios. O uso tópico de fluoreto contribui para uma absorção maior. O fluoreto ingerido através da água é quase completamente absorvido pelo corpo humano, enquanto que o flúor presente nos alimentos não é totalmente absorvido; em alguns casos como através de peixes e outras carnes, chega apenas a 25%.

Uma vez absorvido, o fluoreto é distribuído rapidamente pelo corpo humano, grande parte é retida nos ossos, enquanto que uma pequena parte é retida nos dentes. O fluoreto pode ser excretado pela urina e sua excreção é influenciada por uma série de fatores tais como o estado de saúde da pessoa e seu grau de exposição à esta substância. O fluoreto é adicionado às águas de abastecimento público para conferir-lhes proteção à cárie dentária. O fluoreto reduz a solubilidade da parte mineralizada do dente, tornando mais resistente à ação de bactérias e inibe processos enzimáticos que dissolvem a substância orgânica protéica e o material calcificante do dente. Constitui-se também em meio impróprio ao desenvolvimento de lactobacilus acidophilus.

Por outro lado, acima de certas dosagens o fluoreto provoca a fluorose dentária, ou seja, o mosqueamento do esmalte dos dentes. O assunto até hoje ainda é polêmico entre os especialistas, sendo que os odontólogos sanitaristas contrários à fluoretação em águas de abastecimento, alertam para a possibilidade de ocorrência de outros problemas como a descalcificação de ossos de idosos, a chamada fluorose óssea. Frequentemente ocorrem novas propostas para a administração alternativa de fluoreto.

Nesse sentido, a fluoretação das águas deve ser executada sob controle rigoroso, utilizando-se bons equipamentos de dosagem e implantando-se programas efetivos de controle de residual de fluoreto na rede de abastecimento de água, o que nem sempre tem acontecido.

Os benefícios da aplicação de fluoreto em águas para a prevenção da cárie dentária são inquestionáveis. Estudos desenvolvidos nos Estados Unidos demonstram que, para as condições lá existentes, os seguintes resultados podem ser esperados: o índice utilizado é o "c.p.o.", ou seja, número de dentes cariados, perdidos e obturados por cem crianças. Os estudos são conclusivos de que para concentrações de fluoreto acima de 1,5 mg/L, ocorre aumento na incidência da fluorose dentária; para concentrações de fluoreto da ordem de 1,0 mg/L, ocorre redução do c.p.o. da ordem de 60% sem ocorrer fluorose; para concentrações de fluoreto menores que 1,0 mg/L, ocorrem menores reduções percentuais na redução da cárie. Na verdade, o que é necessária é a ingestão de 1,5 mg/dia de fluoreto, o que para um consumo de água de 1,2 a 1,6 litros por dia, resulta em concentrações da ordem de 1,0 mg/L. A Organização Mundial de Saúde considera 1,5 mg/L o valor máximo permissível.

Fósforo Total

O fósforo aparece em águas naturais devido principalmente às descargas de esgotos sanitários.

Nestes, os detergentes superfosfatados empregados em larga escala domesticamente constituem a principal fonte, além da própria matéria fecal, que é rica em proteínas. Alguns efluentes industriais, como os de indústrias de fertilizantes, pesticidas, químicas em geral, conservas alimentícias, abatedouros, frigoríficos e laticínios, apresentam fósforo em quantidades excessivas. As águas drenadas em áreas agrícolas e urbanas também podem provocar a presença excessiva de fósforo em águas naturais.

O fósforo pode se apresentar nas águas sob três formas diferentes. Os fosfatos orgânicos são a forma em que o fósforo compõe moléculas orgânicas, como a de um detergente, por exemplo. Os ortofosfatos, por outro lado, são representados pelos radicais, que se combinam com cátions formando sais inorgânicos nas águas. Os polifosfatos ou fosfatos condensados são polímeros de ortofosfatos. No entanto, esta terceira forma não é muito importante nos estudos de controle de qualidade das águas, porque os polifosfatos sofrem hidrólise se convertendo rapidamente em ortofosfatos nas águas naturais.

Assim como o nitrogênio, o fósforo constitui-se em um dos principais nutrientes para os processos biológicos, ou seja, é um dos chamados macro-nutrientes, por ser exigido também em grandes quantidades pelas células. Nesta qualidade, torna-se parâmetro imprescindível em programas de caracterização de efluentes industriais que se pretende tratar por processo biológico. Em processos aeróbios, como informado anteriormente, exige-se uma relação DBO :N:P mínima de 100:5:1, enquanto que em processos anaeróbios tem-se exigido a relação DQO:N:P mínima de 350:7:1. Os esgotos sanitários no Brasil apresentam, tipicamente, concentração de fósforo total na faixa de 6 a 10 mgP/L, não exercendo efeito limitante sobre os tratamento biológicos. Alguns efluentes industriais, porém, não possuem fósforo em suas composições, ou apresentam concentrações muito baixas. Neste caso, devese adicionar artificialmente compostos contendo fósforo como o monoamôneo-fosfato (MAP) que, por ser usado em larga escala como fertilizante, apresenta custo relativamente baixo. Ainda por ser nutriente para processos biológicos, o excesso de fósforo em esgotos sanitários e efluentes industriais, por outro lado, conduz a processos de eutrofização das águas naturais.

(Parte 2 de 5)

Comentários