Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

Curso de Programação em C - Apostilas - Computação, Notas de estudo de Informática

Apostilas e exercicios de Computação da Universidade Federal de Ouro Preto sobre o estudo da Programação em C, definição, Introdução às Funções.

Tipologia: Notas de estudo

2013

Compartilhado em 22/03/2013

Barros32
Barros32 🇧🇷

4.4

(384)

568 documentos

1 / 111

Documentos relacionados


Pré-visualização parcial do texto

Baixe Curso de Programação em C - Apostilas - Computação e outras Notas de estudo em PDF para Informática, somente na Docsity! 1 Curso de Programação em C INTRODUÇÃO Vamos, neste curso, aprender os conceitos básicos da linguagem de programação C a qual tem se tornado cada dia mais popular, devido à sua versatilidade e ao seu poder. Uma das grandes vantagens do C é que ele possui tanto características de "alto nível" quanto de "baixo nível". Apesar de ser bom, não é pré-requisito do curso um conhecimento anterior de linguagens de programação. É importante uma familiaridade com computadores. O que é importante é que você tenha vontade de aprender, dedicação ao curso e, caso esteja em uma das turmas do curso, acompanhe atentamente as discussões que ocorrem na lista de discussões do curso. O C nasceu na década de 70. Seu inventor, Dennis Ritchie, implementou-o pela primeira vez usando um DEC PDP-11 rodando o sistema operacional UNIX. O C é derivado de uma outra linguagem: o B, criado por Ken Thompson. O B, por sua vez, veio da linguagem BCPL, inventada por Martin Richards. O C é uma linguagem de programação genérica que é utilizada para a criação de programas diversos como processadores de texto, planilhas eletrônicas, sistemas operacionais, programas de comunicação, programas para a automação industrial, gerenciadores de bancos de dados, programas de projeto assistido por computador, programas para a solução de problemas da Engenharia, Física, Química e outras Ciências, etc ... É bem provável que o Navegador que você está usando para ler este texto tenha sido escrito em C ou C++. Estudaremos a estrutura do ANSI C, o C padronizado pela ANSI. Veremos ainda algumas funções comuns em compiladores para alguns sistemas operacionais. Quando não houver equivalentes para as funções em outros sistemas, apresentaremos formas alternativas de uso dos comandos. Sugerimos que o aluno realmente use o máximo possível dos exemplos, problemas e exercícios aqui apresentados, gerando os programas executáveis com o seu compilador. Quando utilizamos o compilador aprendemos a lidar com mensagens de aviso, mensagens de erro, bugs, etc. Apenas ler os exemplos não basta. O conhecimento de uma linguagem de programação transcende o conhecimento de estruturas e funções. O C exige, além do domínio da linguagem em si, uma familiaridade com o compilador e experiência em achar "bugs" nos programas. É importante então que o leitor digite, compile e execute os exemplos apresentados. Capítulo – 1 (Primeiros Passos) O C é "Case Sensitive" Vamos começar o nosso curso ressaltando um ponto de suma importância: o C é "Case Sensitive", isto é, maiúsculas e minúsculas fazem diferença. Se declararmos uma variável com o nome soma ela será diferente de Soma, SOMA, SoMa ou sOmA. Da mesma maneira, os comandos do C if e for, por exemplo, só podem ser escritos em minúsculas pois senão o compilador não irá interpretá-los como sendo comandos, mas sim como variáveis. Dois Primeiros Programas Vejamos um primeiro programa em C: #include <stdio.h> /* Um Primeiro Programa */ int main () docsity.com 2 { printf ("Ola! Eu estou vivo!\n"); return(0); } Compilando e executando este programa você verá que ele coloca a mensagem Ola! Eu estou vivo! na tela. Vamos analisar o programa por partes. A linha #include <stdio.h> diz ao compilador que ele deve incluir o arquivo-cabeçalho stdio.h. Neste arquivo existem declarações de funções úteis para entrada e saída de dados (std = standard, padrão em inglês; io = Input/Output, entrada e saída ==> stdio = Entrada e saída padronizadas). Toda vez que você quiser usar uma destas funções deve-se incluir este comando. O C possui diversos arquivos-cabeçalhos. Quando fazemos um programa, uma boa idéia é usar comentários que ajudem a elucidar o funcionamento do mesmo. No caso acima temos um comentário: /* Um Primeiro Programa */. O compilador C desconsidera qualquer coisa que esteja começando com /* e terminando com */. Um comentário pode, inclusive, ter mais de uma linha. A linha int main() indica que estamos definindo uma função de nome main. Todos os programas em C têm que ter uma função main, pois é esta função que será chamada quando o programa for executado. O conteúdo da função é delimitado por chaves { }. O código que estiver dentro das chaves será executado sequencialmente quando a função for chamada. A palavra int indica que esta função retorna um inteiro. O que significa este retorno será visto posteriormente, quando estudarmos um pouco mais detalhadamente as funções do C. A última linha do programa, return(0); , indica o número inteiro que está sendo retornado pela função, no caso o número 0. A única coisa que o programa realmente faz é chamar a função printf(), passando a string (uma string é uma seqüência de caracteres, como veremos brevemente) "Ola! Eu estou vivo!\n" como argumento. É por causa do uso da função printf() pelo programa que devemos incluir o arquivo- cabeçalho stdio.h . A função printf() neste caso irá apenas colocar a string na tela do computador. O \n é uma constante chamada de constante barra invertida. No caso, o \n é a constante barra invertida de "new line" e ele é interpretado como um comando de mudança de linha, isto é, após imprimir Ola! Eu estou vivo! o cursor passará para a próxima linha. É importante observar também que os comandos do C terminam com ; . Podemos agora tentar um programa mais complicado: #include <stdio.h> int main () { int Dias; /* Declaracao de Variaveis */ float Anos; printf ("Entre com o número de dias: "); /* Entrada de Dados */ scanf ("%d",&Dias); Anos=Dias/365.25; /* Conversao Dias->Anos */ printf ("\n\n%d dias equivalem a %f anos.\n",Dias,Anos); return(0); } Vamos entender como o programa acima funciona. São declaradas duas variáveis chamadas Dias e Anos. A primeira é um int (inteiro) e a segunda um float (ponto flutuante). As variáveis declaradas como ponto flutuante existem para armazenar números que possuem casas decimais, como 5,1497. É feita então uma chamada à função printf(), que coloca uma mensagem na tela. Queremos agora ler um dado que será fornecido pelo usuário e colocá-lo na variável inteira Dias. Para tanto usamos a função scanf(). A string "%d" diz à função que iremos ler um inteiro. O segundo parâmetro passado à função diz que o dado lido deverá ser armazenado docsity.com 5 } Retornando valores Muitas vezes é necessário fazer com que uma função retorne um valor. As funções que vimos até aqui estavam retornando o número 0. Podemos especificar um tipo de retorno indicando-o antes do nome da função. Mas para dizer ao C o que vamos retornar precisamos da palavra reservada return. Sabendo disto fica fácil fazer uma função para multiplicar dois inteiros e que retorna o resultado da multiplicação. Veja: #include <stdio.h> int prod (int x,int y) { return (x*y); } int main () { int saida; saida=prod (12,7); printf ("A saida e: %d\n",saida); return(0); } Veja que, como prod retorna o valor de 12 multiplicado por 7, este valor pode ser usado em uma expressão qualquer. No programa fizemos a atribuição deste resultado à variável saida, que posteriormente foi impressa usando o printf. Uma observação adicional: se não especificarmos o tipo de retorno de uma função, o compilador C automaticamente suporá que este tipo é inteiro. Porém, não é uma boa prática não se especificar o valor de retorno e, neste curso, este valor será sempre especificado. Com relação à função main, o retorno sempre será inteiro. Normalmente faremos a função main retornar um zero quando ela é executada sem qualquer tipo de erro. Mais um exemplo de função, que agora recebe dois floats e também retorna um float:: #include <stdio.h> float prod (float x,float y) { return (x*y); } int main () { float saida; saida=prod (45.2,0.0067); printf ("A saida e: %f\n",saida); return(0); } Forma geral Apresentamos aqui a forma geral de uma função: tipo_de_retorno nome_da_função (lista_de_argumentos) { código_da_função } docsity.com 6 AUTO AVALIAÇÃO Veja como você está. Escreva uma função que some dois inteiros e retorne o valor da soma. Introdução Básica às Entradas e Saídas Caracteres Os caracteres são um tipo de dado: o char. O C trata os caracteres ('a', 'b', 'x', etc ...) como sendo variáveis de um byte (8 bits). Um bit é a menor unidade de armazenamento de informações em um computador. Os inteiros (ints) têm um número maior de bytes. Dependendo da implementação do compilador, eles podem ter 2 bytes (16 bits) ou 4 bytes (32 bits). Na linguagem C, também podemos usar um char para armazenar valores numéricos inteiros, além de usá-lo para armazenar caracteres de texto. Para indicar um caractere de texto usamos apóstrofes. Veja um exemplo de programa que usa caracteres: #include <stdio.h> int main () { char Ch; Ch='D'; printf ("%c",Ch); return(0); } No programa acima, %c indica que printf() deve colocar um caractere na tela. Como vimos anteriormente, um char também é usado para armazenar um número inteiro. Este número é conhecido como o código ASCII correspondente ao caractere. Veja o programa abaixo: #include <stdio.h> int main () { char Ch; Ch='D'; printf ("%d",Ch); /* Imprime o caracter como inteiro */ return(0);} Este programa vai imprimir o número 68 na tela, que é o código ASCII correspondente ao caractere 'D' (d maiúsculo). Muitas vezes queremos ler um caractere fornecido pelo usuário. Para isto as funções mais usadas, quando se está trabalhando em ambiente DOS ou Windows, são getch() e getche(). Ambas retornam o caractere pressionado. getche() imprime o caractere na tela antes de retorná-lo e getch() apenas retorna o caractere pressionado sem imprimí-lo na tela. Ambas as funções podem ser encontradas no arquivo de cabeçalho conio.h. Geralmente estas funções não estão disponíveis em ambiente Unix (compiladores cc e gcc) e podem ser substituídas pela função scanf(), porém sem as mesmas funcionalidades. Eis um exemplo que usa a função getch(), e seu correspondente em ambiente Unix: #include <stdio.h> #include <conio.h> /* Este programa usa conio.h . Se você não tiver a conio, ele não funcionará no Unix */ int main () { char Ch; Ch=getch(); printf ("Voce pressionou a tecla %c",Ch); docsity.com 7 return(0); } Equivalente para o ambiente Unix do programa acima, sem usar getch(): #include <stdio.h> int main () { char Ch; scanf("%c", &Ch); printf ("Voce pressionou a tecla %c",Ch); return(0); } A principal diferença da versão que utiliza getch() para a versão que não utiliza getch() é que no primeiro caso o usuário simplesmente aperta a tecla e o sistema lê diretamente a tecla pressionada. No segundo caso, é necessário apertar também a tecla <ENTER>. Strings No C uma string é um vetor de caracteres terminado com um caractere nulo. O caracter nulo é um caractere com valor inteiro igual a zero (código ASCII igual a 0). O terminador nulo também pode ser escrito usando a convenção de barra invertida do C como sendo '\0'. Embora o assunto vetores seja discutido posteriormente, veremos aqui os fundamentos necessários para que possamos utilizar as strings. Para declarar uma string, podemos usar o seguinte formato geral: char nome_da_string[tamanho]; Isto declara um vetor de caracteres (uma string) com número de posições igual a tamanho. Note que, como temos que reservar um caractere para ser o terminador nulo, temos que declarar o comprimento da string como sendo, no mínimo, um caractere maior que a maior string que pretendemos armazenar. Vamos supor que declaremos uma string de 7 posições e coloquemos a palavra João nela. Teremos: J o a o \0 ... ... No caso acima, as duas células não usadas têm valores indeterminados. Isto acontece porque o C não inicializa variáveis, cabendo ao programador esta tarefa. Portanto as únicas células que são inicializadas são as que contêm os caracteres 'J', 'o', 'a', 'o' e '\0' . Se quisermos ler uma string fornecida pelo usuário podemos usar a função gets(). Um exemplo do uso desta função é apresentado abaixo. A função gets() coloca o terminador nulo na string, quando você aperta a tecla "Enter". #include <stdio.h> int main () { char string[100]; printf ("Digite uma string: "); gets (string); printf ("\n\nVoce digitou %s",string); return(0); } Neste programa, o tamanho máximo da string que você pode entrar é uma string de 99 caracteres. Se você entrar com uma string de comprimento maior, o programa irá aceitar, mas os resultados podem ser desastrosos. Veremos porque posteriormente. Como as strings são vetores de caracteres, para se acessar um determinado caracter de uma string, basta "indexarmos", ou seja, usarmos um índice para acessarmos o caracter desejado dentro da string. Suponha uma string chamada str. Podemos acessar a segunda letra de str da seguinte forma: str[1] = 'a'; docsity.com 10 } No programa acima a expressão num>10 é avaliada e retorna um valor diferente de zero, se verdadeira, e zero, se falsa. No exemplo, se num for maior que 10, será impressa a frase: "O número e maior que 10". Repare que, se o número for igual a 10, estamos executando dois comandos. Para que isto fosse possível, tivemos que agrupa-los em um bloco que se inicia logo após a comparação e termina após o segundo printf. Repare também que quando queremos testar igualdades usamos o operador == e não =. Isto porque o operador = representa apenas uma atribuição. Pode parecer estranho à primeira vista, mas se escrevêssemos if (num=10) ... /* Isto esta errado */ o compilador iria atribuir o valor 10 à variável num e a expressão num=10 iria retornar 10, fazendo com que o nosso valor de num fosse modificado e fazendo com que a declaração fosse executada sempre. Este problema gera erros frequentes entre iniciantes e, portanto, muita atenção deve ser tomada. Os operadores de comparação são: == (igual), != (diferente de), > (maior que), < (menor que), >= (maior ou igual), <= (menor ou igual). for O loop (laço) for é usado para repetir um comando, ou bloco de comandos, diversas vezes, de maneira que se possa ter um bom controle sobre o loop. Sua forma geral é: for (inicialização;condição;incremento) declaração; A declaração no comando for também pode ser um bloco ({ } ) e neste caso o ; é omitido. O melhor modo de se entender o loop for é ver de que maneira ele funciona "por dentro". O loop for é equivalente a se fazer o seguinte: inicialização; if (condição) { declaração; incremento; "Volte para o comando if" } Podemos ver que o for executa a inicialização incondicionalmente e testa a condição. Se a condição for falsa ele não faz mais nada. Se a condição for verdadeira ele executa a declaração, o incremento e volta a testar a condição. Ele fica repetindo estas operações até que a condição seja falsa. Abaixo vemos um programa que coloca os primeiros 100 números na tela: #include <stdio.h> int main () { int count; for (count=1;count<=100;count=count+1) printf ("%d ",count); return(0); } Outro exemplo interessante é mostrado a seguir: o programa lê uma string e conta quantos dos caracteres desta string são iguais à letra 'c' #include <stdio.h> int main () docsity.com 11 { char string[100]; /* String, ate' 99 caracteres */ int i, cont; printf("\n\nDigite uma frase: "); gets(string); /* Le a string */ printf("\n\nFrase digitada:\n%s", string); cont = 0; for (i=0; string[i] != '\0'; i=i+1) { if ( string[i] == 'c' ) /* Se for a letra 'c' */ cont = cont +1; /* Incrementa o contador de caracteres */ } printf("\nNumero de caracteres c = %d", cont); return(0); } Note o teste que está sendo feito no for: o caractere armazenado em string[i] é comparado com '\0' (caractere final da string). Caso o caractere seja diferente de '\0', a condição é verdadeira e o bloco do for é executado. Dentro do bloco existe um if que testa se o caractere é igual a 'c'. Caso seja, o contador de caracteres c é incrementado. Mais um exemplo, agora envolvendo caracteres: /* Este programa imprime o alfabeto: letras maiúsculas */ #include <stdio.h> int main() { char letra; for(letra = 'A' ; letra <= 'Z' ; letra =letra+1) printf("%c ", letra); } Este programa funciona porque as letras maiúsculas de A a Z possuem código inteiro sequencial. AUTO AVALIAÇÃO Veja como você está. a) Explique porque está errado fazer if (num=10) ... O que irá acontecer? b) Escreva um programa que coloque os números de 1 a 100 na tela na ordem inversa (começando em 100 e terminando em 1). c) Escreva um programa que leia uma string, conte quantos caracteres desta string são iguais a 'a' e substitua os que forem iguais a 'a' por 'b'. O programa deve imprimir o número de caracteres modificados e a string modificada. Comentários Como já foi dito, o uso de comentários torna o código do programa mais fácil de se entender. Os comentários do C devem começar com /* e terminar com */. O C padrão não permite comentários aninhados (um dentro do outro), mas alguns compiladores os aceitam. AUTO AVALIAÇÃO Veja como você está: Escreva comentários para os programas dos exercícios já realizados. docsity.com 12 Palavras Reservadas do C Todas as linguagens de programação têm palavras reservadas. As palavras reservadas não podem ser usadas a não ser nos seus propósitos originais, isto é, não podemos declarar funções ou variáveis com os mesmos nomes. Como o C é "case sensitive" podemos declarar uma variável For, apesar de haver uma palavra reservada for, mas isto não é uma coisa recomendável de se fazer pois pode gerar confusão. Apresentamos a seguir as palavras reservadas do ANSI C. Veremos o significado destas palavras chave à medida em que o curso for progredindo: auto break case char const continue default do double else enum extern float for goto if int long register return short signed sizeof static struct switch typedef union unsigned void volatile while Capitulo – 2 (VARIÁVEIS, CONSTANTES, OPERADORES E EXPRESSÕES) Nomes de Variáveis As variáveis no C podem ter qualquer nome se duas condições forem satisfeitas: o nome deve começar com uma letra ou sublinhado (_) e os caracteres subsequentes devem ser letras, números ou sublinhado (_). Há apenas mais duas restrições: o nome de uma variável não pode ser igual a uma palavra reservada, nem igual ao nome de uma função declarada pelo programador, ou pelas bibliotecas do C. Variáveis de até 32 caracteres são aceitas. Mais uma coisa: é bom sempre lembrar que o C é "case sensitive" e portanto deve-se prestar atenção às maiúsculas e minúsculas. Quanto aos nomes de variáveis... • É uma prática tradicional do C, usar letras minúsculas para nomes de variáveis e maiúsculas para nomes de constantes. Isto facilita na hora da leitura do código; • Quando se escreve código usando nomes de variáveis em português, evita-se possíveis conflitos com nomes de rotinas encontrados nas diversas bibliotecas, que são em sua maioria absoluta, palavras em inglês. Os Tipos do C O C tem 5 tipos básicos: char, int, float, void, double. Destes não vimos ainda os dois últimos: O double é o ponto flutuante duplo e pode ser visto como um ponto flutuante com muito mais precisão. O void é o tipo vazio, ou um "tipo sem tipo". A aplicação deste "tipo" será vista posteriormente. Para cada um dos tipos de variáveis existem os modificadores de tipo. Os modificadores de tipo do C são quatro: signed, unsigned, long e short. Ao float não se pode aplicar nenhum e ao double pode-se aplicar apenas o long. Os quatro modificadores podem ser aplicados a inteiros. A intenção é que short e long devam prover tamanhos diferentes de inteiros onde isto for prático. Inteiros menores (short) ou maiores (long). int normalmente terá o tamanho natural para uma determinada máquina. Assim, numa máquina de 16 bits, int provavelmente terá 16 bits. Numa máquina de 32, int deverá ter 32 bits. Na verdade, cada docsity.com 15 int i; int j; j = 10; int k = 20; /* Esta declaração de variável não é válida, pois não está sendo feita no início do bloco */ return(0); } AUTO AVALIAÇÃO Veja como você está: Escreva um programa que declare uma variável inteira global e atribua o valor 10 a ela. Declare outras 5 variáveis inteiras locais ao programa principal e atribua os valores 20, 30, ..., 60 a elas. Declare 6 variáveis caracteres e atribua a elas as letras c, o, e, l, h, a . Finalmente, o programa deverá imprimir, usando todas as variaveis declaradas: As variaveis inteiras contem os numeros: 10,20,30,40,50,60 O animal contido nas variaveis caracteres é a coelha. Constantes Constantes são valores que são mantidos fixos pelo compilador. Já usamos constantes neste curso. São consideradas constantes, por exemplo, os números e caracteres como 45.65 ou 'n', etc... Constantes dos tipos básicos Abaixo vemos as constantes relativas aos tipos básicos do C: Tipo de Dado Exemplos de Constantes char 'b' '\n' '\0' int 2 32000 -130 long int 100000 -467 short int 100 -30 unsigned int 50000 35678 float 0.0 23.7 -12.3e-10 double 12546354334.0 -0.0000034236556 Constantes hexadecimais e octais Muitas vezes precisamos inserir constantes hexadecimais (base dezesseis) ou octais (base oito) no nosso programa. O C permite que se faça isto. As constantes hexadecimais começam com 0x. As constantes octais começam em 0. Alguns exemplos: Constante Tipo 0xEF Constante Hexadecimal (8 bits) 0x12A4 Constante Hexadecimal (16 bits) 03212 Constante Octal (12 bits) 034215432 Constante Octal (24 bits) Nunca escreva portanto 013 achando que o C vai compilar isto como se fosse 13. Na linguagem C 013 é diferente de 13! docsity.com 16 Constantes strings Já mostramos como o C trata strings. Vamos agora alertar para o fato de que uma string "Joao" é na realidade uma constante string. Isto implica, por exemplo, no fato de que 't' é diferente de "t", pois 't' é um char enquanto que "t" é uma constante string com dois chars onde o primeiro é 't' e o segundo é '\0'. Constantes de barra invertida O C utiliza, para nos facilitar a tarefa de programar, vários códigos chamados códigos de barra invertida. Estes são caracteres que podem ser usados como qualquer outro. Uma lista com alguns dos códigos de barra invertida é dada a seguir: Código Significado \b Retrocesso ("back") \f Alimentação de formulário ("form feed") \n Nova linha ("new line") \t Tabulação horizontal ("tab") \" Aspas \' Apóstrofo \0 Nulo (0 em decimal) \\ Barra invertida \v Tabulação vertical \a Sinal sonoro ("beep") \N Constante octal (N é o valor da constante) \xN Constante hexadecimal (N é o valor da constante) Operadores Aritméticos e de Atribuição Os operadores aritméticos são usados para desenvolver operações matemáticas. A seguir apresentamos a lista dos operadores aritméticos do C: Operado + - * / % ++ -- Ação Soma (inteira e ponto flutuante) Subtração ou Troca de sinal (inteira e ponto flutuante) Multiplicação (inteira e ponto flutuante) Divisão (inteira e ponto flutuante) Resto de divisão (de inteiros) Incremento (inteiro e ponto flutuante) Decremento (inteiro e ponto flutuante) O C possui operadores unários e binários. Os unários agem sobre uma variável apenas, modificando ou não o seu valor, e retornam o valor final da variável. Os binários usam duas variáveis e retornam um terceiro valor, sem alterar as variáveis originais. A soma é um operador binário pois pega duas variáveis, soma seus valores, sem alterar as variáveis, e retorna esta soma. Outros operadores binários são os operadores - (subtração), *, / e %. O operador - como troca de sinal é um operador unário que não altera a variável sobre a qual é aplicado, pois ele retorna o valor da variável multiplicado por -1. O operador / (divisão) quando aplicado a variáveis inteiras, nos fornece o resultado da divisão inteira; quando aplicado a variáveis em ponto flutuante nos fornece o resultado da docsity.com 17 divisão "real". O operador % fornece o resto da divisão de dois inteiros. Assim seja o seguinte trecho de código: int a = 17, b = 3; int x, y; float z = 17. , z1, z2; x = a / b; y = a % b; z1 = z / b; z2 = a/b; ao final da execução destas linhas, os valores calculados seriam x = 5, y = 2, z1 = 5.666666 e z2 = 5.0 . Note que, na linha correspondente a z2, primeiramente é feita uma divisão inteira (pois os dois operandos são inteiros). Somente após efetuada a divisão é que o resultado é atribuído a uma variável float. Os operadores de incremento e decremento são unários que alteram a variável sobre a qual estão aplicados. O que eles fazem é incrementar ou decrementar, a variável sobre a qual estão aplicados, de 1. Então x++; x--; são equivalentes a x=x+1; x=x-1; Estes operadores podem ser pré-fixados ou pós- fixados. A diferença é que quando são pré-fixados eles incrementam e retornam o valor da variável já incrementada. Quando são pós-fixados eles retornam o valor da variável sem o incremento e depois incrementam a variável. Então, em x=23; y=x++; teremos, no final, y=23 e x=24. Em x=23; y=++x; teremos, no final, y=24 e x=24. Uma curiosidade: a linguagem de programação C++ tem este nome pois ela seria um "incremento" da linguagem C padrão. A linguagem C++ é igual a linguagem C só que com extensões que permitem a programação orientada a objeto, o que é um recurso extra. O operador de atribuição do C é o =. O que ele faz é pegar o valor à direita e atribuir à variável da esquerda. Além disto ele retorna o valor que ele atribuiu. Isto faz com que as seguintes expressões sejam válidas: x=y=z=1.5; /* Expressao 1 */ if (k=w) ... /* Expressao 2 */ A expressão 1 é válida, pois quando fazemos z=1.5 ela retorna 1.5, que é passado adiante, fazendo y = 1.5 e posteriormente x = 1.5. A expressão 2 será verdadeira se w for diferente de zero, pois este será o valor retornado por k=w. Pense bem antes de usar a expressão dois, pois ela pode gerar erros de interpretação. Você não está comparando k e w. Você está atribuindo o valor de w a k e usando este valor para tomar a decisão. AUTO AVALIAÇÃO Veja como você está: Diga o resultado das variáveis x, y e z depois da seguinte sequência de operações: int x,y,z; x=y=10; z=++x; x=-x; docsity.com 20 AUTO AVALIAÇÃO Veja como você está: Diga se as seguintes expressões serão verdadeiras ou falsas: -> ((10>5)||(5>10)) -> (!(5==6)&&(5!=6)&&((2>1)||(5<=4))) Expressões Expressões são combinações de variáveis, constantes e operadores. Quando montamos expressões temos que levar em consideração a ordem com que os operadores são executados, conforme a tabela de precedências da linguagem C. Exemplos de expressões: Anos=Dias/365.25; i = i+3; c= a*b + d/e; c= a*(b+d)/e; Conversão de tipos em expressões Quando o C avalia expressões onde temos variáveis de tipos diferentes o compilador verifica se as conversões são possíveis. Se não são, ele não compilará o programa, dando uma mensagem de erro. Se as conversões forem possíveis ele as faz, seguindo as regras abaixo: 1. Todos os chars e short ints são convertidos para ints. Todos os floats são convertidos para doubles. 2. Para pares de operandos de tipos diferentes: se um deles é long double o outro é convertido para long double; se um deles é double o outro é convertido para double; se um é long o outro é convertido para long; se um é unsigned o outro é convertido para unsigned. Expressões que Podem ser Abreviadas O C admite as seguintes equivalências, que podem ser usadas para simplificar expressões ou para facilitar o entendimento de um programa: Expressão Original Expressão Equivalente x=x+k; x+=k; x=x-k; x-=k; x=x*k; x*=k; x=x/k; x/=k; x=x>>k; x>>=k; x=x<<k; x<<=k; x=x&k; x&=k; etc... Encadeando expressões: o operador , O operador , determina uma lista de expressões que devem ser executadas sequencialmente. Em síntese, a vírgula diz ao compilador: execute as duas expressões separadas pela vírgula, em seqüência. O valor retornado por uma expressão com o operador , é sempre dado pela expressão mais à direita. No exemplo abaixo: x=(y=2,y+3); o valor 2 vai ser atribuído a y, se somará 3 a y e o retorno (5) será atribuído à variável x . Pode-se encadear quantos operadores , forem necessários. O exemplo a seguir mostra um outro uso para o operador , dentro de um for: docsity.com 21 #include<stdio.h> int main() { int x, y; for(x=0 , y=0 ; x+y < 100 ; ++x , y++) /* Duas variáveis de controle: x e y . Foi atribuído o valor zero a cada uma delas na inicialização do for e ambas são incrementadas na parte de incremento do for */ printf("\n%d ", x+y); /* o programa imprimirá os números pares de 2 a 98 */ } Tabela de Precedências do C Esta é a tabela de precedência dos operadores em C. Alguns (poucos) operadores ainda não foram estudados, e serão apresentados em aulas posteriores. Maior precedência () [] -> ! ~ ++ -- . -(unário) (cast) *(unário) &(unário) sizeof * / % + - << >> <<= >>= == != & ^ | && || ? = += -= *= /= Menor precedência , Uma dica aos iniciantes: Você não precisa saber toda a tabela de precedências de cor. É útil que você conheça as principais relações, mas é aconselhável que ao escrever o seu código, você tente isolar as expressões com parênteses, para tornar o seu programa mais legível. Modeladores (Casts) Um modelador é aplicado a uma expressão. Ele força a mesma a ser de um tipo especificado. Sua forma geral é: (tipo)expressão Um exemplo: #include <stdio.h> int main () { int num; float f; num=10; f=(float)num/7; printf ("%f",f); return(0); } docsity.com 22 Se não tivéssemos usado o modelador no exemplo acima o C faria uma divisão inteira entre 10 e 7. O resultado seria 1 (um) e este seria depois convertido para float mas continuaria a ser 1.0. Com o modelador temos o resultado correto. AUTO AVALIAÇÃO Veja como você está: Compile o exemplo acima sem usar o modelador, e verifique os resultados. Compile-o novamente usando o modelador e compare a saída com os resultados anteriores. Capítulo – 3 (VARIÁVEIS, CONSTANTES, OPERADORES E EXPRESSÕES) As estruturas de controle de fluxo são fundamentais para qualquer linguagem de programação. Sem elas só haveria uma maneira do programa ser executado: de cima para baixo comando por comando. Não haveria condições, repetições ou saltos. A linguagem C possui diversos comandos de controle de fluxo. É possível resolver todos os problemas sem utilizar todas elas, mas devemos nos lembrar que a elegância e facilidade de entendimento de um programa dependem do uso correto das estruturas no local certo. O Comando if Já introduzimos o comando if. Sua forma geral é: if (condição) declaração; A expressão, na condição, será avaliada. Se ela for zero, a declaração não será executada. Se a condição for diferente de zero a declaração será executada. Aqui reapresentamos o exemplo de um uso do comando if: #include <stdio.h> int main () { int num; printf ("Digite um numero: "); scanf ("%d",&num); if (num>10) printf ("\n\nO numero e maior que 10"); if (num==10) { printf ("\n\nVoce acertou!\n"); printf ("O numero e igual a 10."); } if (num<10) printf ("\n\nO numero e menor que 10"); return(0); docsity.com 25 return(0); } O Operador ? Uma expressão como: if (a>0) b=-150; else b=150; pode ser simplificada usando-se o operador ? da seguinte maneira: b=a>0?-150:150; De uma maneira geral expressões do tipo: if (condição) expressão_1; else expressão_2; podem ser substituídas por: condição?expressão_1:expressão_2; O operador ? é limitado (não atende a uma gama muito grande de casos) mas pode ser usado para simplificar expressões complicadas. Uma aplicação interessante é a do contador circular. Veja o exemplo: #include <stdio.h> int main() { int index = 0, contador; char letras[5] = "Joao"; for (contador=0; contador < 1000; contador++) { printf("\n%c",letras[index]); (index==3) ? index=0: ++index; } } O nome Joao é escrito na tela verticalmente até a variável contador determinar o término do programa. Enquanto isto a variável index assume os valores 0, 1, 2, 3, , 0, 1, ... progressivamente. AUTO-AVALIAÇÃO Veja como você está: Altere o último exemplo para que ele escreva cada letra 5 vezes seguidas. Para isto, use um 'if' para testar se o contador é divisível por cinco (utilize o operador %) e só então realizar a atualização em index. O Comando switch O comando if-else e o comando switch são os dois comandos de tomada de decisão. Sem dúvida alguma o mais importante dos dois é o if, mas o comando switch tem aplicações valiosas. Mais uma vez vale lembrar que devemos usar o comando certo no local certo. Isto assegura um código limpo e de fácil entendimento. O comando switch é próprio para se testar uma variável em relação a diversos valores pré-estabelecidos. Sua forma geral é: switch (variável) docsity.com 26 { case constante_1: declaração_1; break; case constante_2: declaração_2; break; . . . case constante_n: declaração_n; break; default declaração_default; } Podemos fazer uma analogia entre o switch e a estrutura if-else-if apresentada anteriormente. A diferença fundamental é que a estrutura switch não aceita expressões. Aceita apenas constantes. O switch testa a variável e executa a declaração cujo case corresponda ao valor atual da variável. A declaração default é opcional e será executada apenas se a variável, que está sendo testada, não for igual a nenhuma das constantes. O comando break, faz com que o switch seja interrompido assim que uma das declarações seja executada. Mas ele não é essencial ao comando switch. Se após a execução da declaração não houver um break, o programa continuará executando. Isto pode ser útil em algumas situações, mas eu recomendo cuidado. Veremos agora um exemplo do comando switch: #include <stdio.h> int main () { int num; printf ("Digite um numero: "); scanf ("%d",&num); switch (num) { case 9: printf ("\n\nO numero e igual a 9.\n"); break; case 10: printf ("\n\nO numero e igual a 10.\n"); docsity.com 27 break; case 11: printf ("\n\nO numero e igual a 11.\n"); break; default: printf ("\n\nO numero nao e nem 9 nem 10 nem 11.\n"); } return(0); } AUTO AVALIAÇÃO Veja como você está. Escreva um programa que pede para o usuário entrar um número correspondente a um dia da semana e que então apresente na tela o nome do dia. utilizando o comando switch. O Comando for for é a primeira de uma série de três estruturas para se trabalhar com loops de repetição. As outras são while e do. As três compõem a segunda família de comandos de controle de fluxo. Podemos pensar nesta família como sendo a das estruturas de repetição controlada. Como já foi dito, o loop for é usado para repetir um comando, ou bloco de comandos, diversas vezes, de maneira que se possa ter um bom controle sobre o loop. Sua forma geral é: for (inicialização;condição;incremento) declaração; O melhor modo de se entender o loop for é ver como ele funciona "por dentro". O loop for é equivalente a se fazer o seguinte: inicialização; if (condição) { declaração; incremento; "Volte para o comando if" } Podemos ver, então, que o for executa a inicialização incondicionalmente e testa a condição. Se a condição for falsa ele não faz mais nada. Se a condição for verdadeira ele executa a declaração, faz o incremento e volta a testar a condição. Ele fica repetindo estas operações até que a condição seja falsa. Um ponto importante é que podemos omitir qualquer um dos elementos do for, isto é, se não quisermos uma inicialização poderemos omiti-la. Abaixo vemos um programa que coloca os primeiros 100 números inteiros na tela: #include <stdio.h> int main () { int count; for (count=1; count<=100; count++) printf ("%d ",count); return(0); } docsity.com 30 AUTO AVALIAÇÃO Veja como você está: Refaça o programa da página anterior. Use o comando while para fechar o loop. O Comando do-while A terceira estrutura de repetição que veremos é o do-while de forma geral: do { declaração; } while (condição); Mesmo que a declaração seja apenas um comando é uma boa prática deixar as chaves. O ponto-e- vírgula final é obrigatório. Vamos, como anteriormente, ver o funcionamento da estrutura do-while "por dentro": declaração; if (condição) "Volta para a declaração" Vemos pela análise do bloco acima que a estrutura do-while executa a declaração, testa a condição e, se esta for verdadeira, volta para a declaração. A grande novidade no comando do- while é que ele, ao contrário do for e do while, garante que a declaração será executada pelo menos uma vez. Um dos usos da extrutura do-while é em menus, nos quais você quer garantir que o valor digitado pelo usuário seja válido, conforme apresentado abaixo: #include <stdio.h> int main () { int i; do { printf ("\n\nEscolha a fruta pelo numero:\n\n"); printf ("\t(1)...Mamao\n"); printf ("\t(2)...Abacaxi\n"); printf ("\t(3)...Laranja\n\n"); scanf("%d", &i); } while ((i<1)||(i>3)); switch (i) { case 1: printf ("\t\tVoce escolheu Mamao.\n"); break; case 2: printf ("\t\tVoce escolheu Abacaxi.\n"); break; case 3: printf ("\t\tVoce escolheu Laranja.\n"); break; } return(0); } docsity.com 31 AUTO AVALIAÇÃO Veja como você está. Refaça o exercício da página 26 utilizando o laço do-while para controlar o fluxo. O Comando break Nós já vimos dois usos para o comando break: interrompendo os comandos switch e for. Na verdade, estes são os dois usos do comando break: ele pode quebrar a execução de um comando (como no caso do switch) ou interromper a execução de qualquer loop (como no caso do for, do while ou do do while). O break faz com que a execução do programa continue na primeira linha seguinte ao loop ou bloco que está sendo interrompido. Observe que um break causará uma saída somente do laço mais interno. Por exemplo: for(t=0; t<100; ++t) { count=1; for(;;) { printf("%d", count); count++; if(count==10) break; } } O código acima imprimirá os números de 1 a 10 cem vezes na tela. Toda vez que o break é encontrado, o controle é devolvido para o laço for externo. Outra observação é o fato que um break usado dentro de uma declaração switch afetará somente os dados relacionados com o switch e nao qualquer outro laço em que o switch estiver. O Comando continue O comando continue pode ser visto como sendo o oposto do break. Ele só funciona dentro de um loop. Quando o comando continue é encontrado, o loop pula para a próxima iteração, sem o abandono do loop, ao contrário do que acontecia no comando break. O programa abaixo exemplifica o uso do continue: #include <stdio.h> int main() { int opcao; while (opcao != 5) { printf("\n\n Escolha uma opcao entre 1 e 5: "); scanf("%d", &opcao); if ((opcao > 5)||(opcao <1)) continue; /* Opcao invalida: volta ao inicio do loop */ switch (opcao) { case 1: printf("\n --> Primeira opcao.."); break; case 2: printf("\n --> Segunda opcao.."); break; case 3: docsity.com 32 printf("\n --> Terceira opcao.."); break; case 4: printf("\n --> Quarta opcao.."); break; case 5: printf("\n --> Abandonando.."); break; } } return(0); } O programa acima ilustra uma aplicação simples para o continue. Ele recebe uma opção do usuario. Se esta opção for inválida, o continue faz com que o fluxo seja desviado de volta ao início do loop. Caso a opção escolhida seja válida o programa segue normalmente. O Comando goto Vamos mencionar o goto apenas para que você saiba que ele existe. O goto é o último comando de controle de fluxo. Ele pertence a uma classe à parte: a dos comandos de salto incondicional. O goto realiza um salto para um local especificado. Este local é determinado por um rótulo. Um rótulo, na linguagem C, é uma marca no programa. Você dá o nome que quiser a esta marca. Podemos tentar escrever uma forma geral: nome_do_rótulo: .... goto nome_do_rótulo; .... Devemos declarar o nome do rótulo na posição para a qual vamos dar o salto seguido de :. O goto pode saltar para um rótulo que esteja mais à frente ou para trás no programa. Uma observação importante é que o rótulo e o goto devem estar dentro da mesma função. Como exemplo do uso do goto vamos reescrever o equivalente ao comando for apresentado na seção equivalente ao mesmo: inicialização; início_do_loop: if (condição) { declaração; incremento; goto início_do_loop; } O comando goto deve ser utilizado com parcimônia, pois o abuso no seu uso tende a tornar o código confuso. O goto não é um comando necessário, podendo sempre ser substituído por outras estruturas de controle. Recomendamos que o goto nunca seja usado. Existem algumas situações muito específicas onde o comando goto pode tornar um código mais fácil de se entender se ele for bem empregado. Um caso em que ele pode ser útil é quando temos vários loops e ifs aninhados e se queira, por algum motivo, sair destes loops e ifs todos de uma vez. Neste caso um goto resolve o problema mais elegantemente que vários docsity.com 35 #include <stdio.h> int main () { int num[100]; /* Declara um vetor de inteiros de 100 posicoes */ int count=0; int totalnums; do { printf ("\nEntre com um numero (-999 p/ terminar): "); scanf ("%d",&num[count]); count++; } while (num[count-1]!=-999); totalnums=count-1; printf ("\n\n\n\t Os números que você digitou foram:\n\n"); for (count=0;count<totalnums;count++) printf (" %d",num[count]); return(0); } No exemplo acima, o inteiro count é inicializado em 0. O programa pede pela entrada de números até que o usuário entre com o Flag -999. Os números são armazenados no vetor num. A cada número armazenado, o contador do vetor é incrementado para na próxima iteração escrever na próxima posição do vetor. Quando o usuário digita o flag, o programa abandona o primeiro loop e armazena o total de números gravados. Por fim, todos os números são impressos. É bom lembrar aqui que nenhuma restrição é feita quanto a quantidade de números digitados. Se o usuário digitar mais de 100 números, o programa tentará ler normalmente, mas o programa os escreverá em uma parte não alocada de memória, pois o espaço alocado foi para somente 100 inteiros. Isto pode resultar nos mais variados erros no instante da execução do programa. AUTO AVALIAÇÃO Veja como você está. Reescreva o exemplo acima, realizando a cada leitura um teste para ver se a dimensão do vetor não foi ultrapassada. Caso o usuário entre com 100 números, o programa deverá abortar o loop de leitura automaticamente. O uso do Flag (-999) não deve ser retirado. Strings Strings são vetores de chars. Nada mais e nada menos. As strings são o uso mais comum para os vetores. Devemos apenas ficar atentos para o fato de que as strings têm o seu último elemento como um '\0'. A declaração geral para uma string é: char nome_da_string [tamanho]; Devemos lembrar que o tamanho da string deve incluir o '\0' final. A biblioteca padrão do C possui diversas funções que manipulam strings. Estas funções são úteis pois, não se pode, por exemplo, igualar duas strings: docsity.com 36 string1=string2; /* NAO faca isto */ Fazer isto é um desastre. Quando você terminar de ler a seção que trata de ponteiros você entenderá porquê. As strings devem ser igualadas elemento a elemento. Quando vamos fazer programas que tratam de string muitas vezes podemos fazer bom proveito do fato de que uma string termina com '\0' (isto é, o número inteiro 0). Veja, por exemplo, o programa abaixo que serve para igualar duas strings (isto é, copia os caracteres de uma string para o vetor da outra): #include <stdio.h> int main () { int count; char str1[100],str2[100]; .... /* Aqui o programa le str1 que sera copiada para str2 */ for (count=0;str1[count];count++) str2[count]=str1[count]; str2[count]='\0'; .... /* Aqui o programa continua */ } A condição no loop for acima é baseada no fato de que a string que está sendo copiada termina em '\0'. Quando o elemento encontrado em str1[count] é o '\0', o valor retornado para o teste condicional é falso (nulo). Desta forma a expressão que vinha sendo verdadeira (não zero) continuamente, torna-se falsa. Vamos ver agora algumas funções básicas para manipulação de strings. gets A função gets() lê uma string do teclado. Sua forma geral é: gets (nome_da_string); O programa abaixo demonstra o funcionamento da função gets(): #include <stdio.h> int main () { char string[100]; printf ("Digite o seu nome: "); gets (string); printf ("\n\n Ola %s",string); return(0); } Repare que é válido passar para a função printf() o nome da string. Você verá mais adiante porque isto é válido. Como o primeiro argumento da função printf() é uma string também é válido fazer: docsity.com 37 printf (string); isto simplesmente imprimirá a string. strcpy Sua forma geral é: strcpy (string_destino,string_origem); A função strcpy() copia a string-origem para a string- destino. Seu funcionamento é semelhante ao da rotina apresentada na seção anterior. As funções apresentadas nestas seções estão no arquivo cabeçalho string.h. A seguir apresentamos um exemplo de uso da função strcpy(): #include <stdio.h> #include <string.h> int main () { char str1[100],str2[100],str3[100]; printf ("Entre com uma string: "); gets (str1); strcpy (str2,str1); /* Copia str1 em str2 */ strcpy (str3,"Voce digitou a string "); /* Copia "Voce digitou a string" em str3 */ printf ("\n\n%s%s",str3,str2); return(0); } strcat A função strcat() tem a seguinte forma geral: strcat (string_destino,string_origem); A string de origem permanecerá inalterada e será anexada ao fim da string de destino. Um exemplo: #include <stdio.h> #include <string.h> int main () { char str1[100],str2[100]; printf ("Entre com uma string: "); gets (str1); strcpy (str2,"Voce digitou a string "); strcat (str2,str1); /* str2 armazenara' Voce digitou a string + o conteudo de str1 */ printf ("\n\n%s",str2); return(0); } strlen Sua forma geral é: strlen (string); docsity.com 40 { char strings [5][100]; int count; for (count=0;count<5;count++) { printf ("\n\nDigite uma string: "); gets (strings[count]); } printf ("\n\n\nAs strings que voce digitou foram:\n\n"); for (count=0;count<5;count++) printf ("%s\n",strings[count]); return(0); } Matrizes multidimensionais O uso de matrizes multidimensionais na linguagem C é simples. Sua forma geral é: tipo_da_variável nome_da_variável [tam1][tam2] ... [tamN]; Uma matriz N-dimensional funciona basicamente como outros tipos de matrizes. Basta lembrar que o índice que varia mais rapidamente é o índice mais à direita. Inicialização Podemos inicializar matrizes, assim como podemos inicializar variáveis. A forma geral de uma matriz como inicialização é: tipo_da_variável nome_da_variável [tam1][tam2] ... [tamN] = {lista_de_valores}; A lista de valores é composta por valores (do mesmo tipo da variável) separados por vírgula. Os valores devem ser dados na ordem em que serão colocados na matriz. Abaixo vemos alguns exemplos de inicializações de matrizes: float vect [6] = { 1.3, 4.5, 2.7, 4.1, 0.0, 100.1 }; int matrx [3][4] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 }; char str [10] = { 'J', 'o', 'a', 'o', '\0' }; char str [10] = "Joao"; char str_vect [3][10] = { "Joao", "Maria", "Jose" }; O primeiro demonstra inicialização de vetores. O segundo exemplo demonstra a inicialização de matrizes multidimensionais, onde matrx está sendo inicializada com 1, 2, 3 e 4 em sua primeira linha, 5, 6, 7 e 8 na segunda linha e 9, 10, 11 e 12 na última linha. No terceiro exemplo vemos como inicializar uma string e, no quarto exemplo, um modo mais compacto de inicializar uma string. O quinto exemplo combina as duas técnicas para inicializar um vetor de strings. Repare que devemos incluir o ; no final da inicialização. Inicialização sem especificação de tamanho Podemos, em alguns casos, inicializar matrizes das quais não sabemos o tamanho a priori. O compilador C vai, neste caso verificar o tamanho do que você declarou e considerar como sendo o tamanho da matriz. Isto ocorre na hora da compilação e não poderá mais ser docsity.com 41 mudado durante o programa, sendo muito útil, por exemplo, quando vamos inicializar uma string e não queremos contar quantos caracteres serão necessários. Alguns exemplos: char mess [] = "Linguagem C: flexibilidade e poder."; int matrx [][2] = { 1,2,2,4,3,6,4,8,5,10 }; No primeiro exemplo, a string mess terá tamanho 36. Repare que o artifício para realizar a inicialização sem especificação de tamanho é não especificar o tamanho! No segundo exemplo o valor não especificado será 5. AUTO AVALIAÇÃO Veja como você está. O que imprime o programa a seguir? Tente entendê-lo e responder. A seguir, execute-o e comprove o resultado. # include <stdio.h> int main() { int t, i, M[3][4]; for (t=0; t<3; ++t) for (i=0; i<4; ++i) M[t][i] = (t*4)+i+1; for (t=0; t<3; ++t) { for (i=0; i<4; ++i) printf ("%3d ", M[t][i]); printf ("\n"); } return(0); } docsity.com 42 Capítulo – 5 (PONTEIROS) Como Funcionam os Ponteiros Os ints guardam inteiros. Os floats guardam números de ponto flutuante. Os chars guardam caracteres. Ponteiros guardam endereços de memória. Quando você anota o endereço de um colega você está criando um ponteiro. O ponteiro é este seu pedaço de papel. Ele tem anotado um endereço. Qual é o sentido disto? Simples. Quando você anota o endereço de um colega, depois você vai usar este endereço para achá-lo. O C funciona assim. Voce anota o endereço de algo numa variável ponteiro para depois usar. Da mesma maneira, uma agenda, onde são guardados endereços de vários amigos, poderia ser vista como sendo uma matriz de ponteiros no C. Um ponteiro também tem tipo. Veja: quando você anota um endereço de um amigo você o trata diferente de quando você anota o endereço de uma firma. Apesar de o endereço dos dois locais ter o mesmo formato (rua, número, bairro, cidade, etc.) eles indicam locais cujos conteúdos são diferentes. Então os dois endereços são ponteiros de tipos diferentes. No C quando declaramos ponteiros nós informamos ao compilador para que tipo de variável vamos apontá-lo. Um ponteiro int aponta para um inteiro, isto é, guarda o endereço de um inteiro. Declarando e Utilizando Ponteiros Para declarar um ponteiro temos a seguinte forma geral: tipo_do_ponteiro *nome_da_variável; É o asterisco (*) que faz o compilador saber que aquela variável não vai guardar um valor mas sim um endereço para aquele tipo especificado. Vamos ver exemplos de declarações: int *pt; char *temp,*pt2; O primeiro exemplo declara um ponteiro para um inteiro. O segundo declara dois ponteiros para caracteres. Eles ainda não foram inicializados (como toda variável do C que é docsity.com 45 E se você quiser usar o conteúdo do ponteiro 15 posições adiante: *(p+15); A subtração funciona da mesma maneira. Uma outra operação, às vezes útil, é a comparação entre dois ponteiros. Mas que informação recebemos quando comparamos dois ponteiros? Bem, em primeiro lugar, podemos saber se dois ponteiros são iguais ou diferentes (== e !=). No caso de operações do tipo >, <, >= e <= estamos comparando qual ponteiro aponta para uma posição mais alta na memória. Então uma comparação entre ponteiros pode nos dizer qual dos dois está "mais adiante" na memória. A comparação entre dois ponteiros se escreve como a comparação entre outras duas variáveis quaisquer: p1>p2 Há entretanto operações que você não pode efetuar num ponteiro. Você não pode dividir ou multiplicar ponteiros, adicionar dois ponteiros, adicionar ou subtrair floats ou doubles de ponteiros. AUTO AVALIAÇÃO Veja como você está. a) Explique a diferença entre p++; (*p)++; *(p++); • O que quer dizer *(p+10);? • Explique o que você entendeu da comparação entre ponteiros b) Qual o valor de y no final do programa? Tente primeiro descobrir e depois verifique no computador o resultado. A seguir, escreva um /* comentário */ em cada comando de atribuição explicando o que ele faz e o valor da variável à esquerda do '=' após sua execução. int main() { int y, *p, x; y = 0; p = &y; x = *p; x = 4; (*p)++; x--; docsity.com 46 (*p) += x; printf ("y = %d\n", y); return(0); } Ponteiros e Vetores Veremos nestas seções que ponteiros e vetores têm uma ligação muito forte. Vetores como ponteiros Vamos dar agora uma idéia de como o C trata vetores. Quando você declara uma matriz da seguinte forma: tipo_da_variável nome_da_variável [tam1][tam2] ... [tamN]; o compilador C calcula o tamanho, em bytes, necessário para armazenar esta matriz. Este tamanho é: tam1 x tam2 x tam3 x ... x tamN x tamanho_do_tipo O compilador então aloca este número de bytes em um espaço livre de memória. O nome da variável que você declarou é na verdade um ponteiro para o tipo da variável da matriz. Este conceito é fundamental. Eis porque: Tendo alocado na memória o espaço para a matriz, ele toma o nome da variável (que é um ponteiro) e aponta para o primeiro elemento da matriz. Mas aí surge a pergunta: então como é que podemos usar a seguinte notação? nome_da_variável[índice] Isto pode ser facilmente explicado desde que você entenda que a notação acima é absolutamente equivalente a se fazer: *(nome_da_variável+índice) Agora podemos entender como é que funciona um vetor! Vamos ver o que podemos tirar de informação deste fato. Fica claro, por exemplo, porque é que, no C, a indexação começa com zero. É porque, ao pegarmos o valor do primeiro elemento de um vetor, queremos, de fato, *nome_da_variável e então devemos ter um índice igual a zero. Então sabemos que: *nome_da_variável é equivalente a nome_da_variável[0] Outra coisa: apesar de, na maioria dos casos, não fazer muito sentido, poderíamos ter índices negativos. Estaríamos pegando posições de memória antes do vetor. Isto explica também porque o C não verifica a validade dos índices. Ele não sabe o tamanho do vetor. Ele apenas aloca a memória, ajusta o ponteiro do nome do vetor para o início do mesmo e, quando você usa os índices, encontra os elementos requisitados. Vamos ver agora um dos usos mais importantes dos ponteiros: a varredura sequencial de uma matriz. Quando temos que varrer todos os elementos de uma matriz de uma forma docsity.com 47 sequencial, podemos usar um ponteiro, o qual vamos incrementando. Qual a vantagem? Considere o seguinte programa para zerar uma matriz: int main () { float matrx [50][50]; int i,j; for (i=0;i<50;i++) for (j=0;j<50;j++) matrx[i][j]=0.0; return(0); } Podemos reescrevê-lo usando ponteiros: int main () { float matrx [50][50]; float *p; int count; p=matrx[0]; for (count=0;count<2500;count++) { *p=0.0; p++; } return(0); } No primeiro programa, cada vez que se faz matrx[i][j] o programa tem que calcular o deslocamento para dar ao ponteiro. Ou seja, o programa tem que calcular 2500 deslocamentos. No segundo programa o único cálculo que deve ser feito é o de um incremento de ponteiro. Fazer 2500 incrementos em um ponteiro é muito mais rápido que calcular 2500 deslocamentos completos. Há uma diferença entre o nome de um vetor e um ponteiro que deve ser frisada: um ponteiro é uma variável, mas o nome de um vetor não é uma variável. Isto significa, que não se consegue alterar o endereço que é apontado pelo "nome do vetor". Seja: int vetor[10]; int *ponteiro, i; ponteiro = &i; /* as operacoes a seguir sao invalidas */ vetor = vetor + 2; /* ERRADO: vetor nao e' variavel */ vetor++; /* ERRADO: vetor nao e' variavel */ vetor = ponteiro; /* ERRADO: vetor nao e' variavel */ Teste as operações acima no seu compilador. Ele dará uma mensagem de erro. Alguns compiladores dirão que vetor não é um Lvalue. Lvalue, significa "Left value", um símbolo que pode ser colocado do lado esquerdo de uma expressão de atribuição, isto é, uma variável. docsity.com 50 string (que está no banco de strings). É por isto que podemos usar strcpy() do seguinte modo: strcpy (string,"String constante."); strcpy() pede dois parâmetros do tipo char*. Como o compilador substitui a string "String constante." pelo seu endereço no banco de strings, tudo está bem para a função strcpy(). O que isto tem a ver com a inicialização de ponteiros? É que, para uma string que vamos usar várias vezes, podemos fazer: char *str1="String constante."; Aí poderíamos, em todo lugar que precisarmos da string, usar a variável str1. Devemos apenas tomar cuidado ao usar este ponteiro. Se o alterarmos vamos perder a string. Se o usarmos para alterar a string podemos facilmente corromper o banco de strings que o compilador criou. Mais uma vez fica o aviso: ponteiros são poderosos mas, se usados com descuido, podem ser uma ótima fonte de dores de cabeça. AUTO AVALIAÇÃO Veja como você está. Escreva a função int strend(char *s, char *t) que retorna 1 (um) se a cadeia de caracteres t ocorrer no final da cadeia s, e 0 (zero) caso contrário. Ponteiros para Ponteiros Um ponteiro para um ponteiro é como se você anotasse o endereço de um papel que tem o endereço da casa do seu amigo. Podemos declarar um ponteiro para um ponteiro com a seguinte notação: tipo_da_variável **nome_da_variável; Algumas considerações: **nome_da_variável é o conteúdo final da variável apontada; *nome_da_variável é o conteúdo do ponteiro intermediário. No C podemos declarar ponteiros para ponteiros para ponteiros, ou então, ponteiros para ponteiros para ponteiros para ponteiros (UFA!) e assim por diante. Para fazer isto (não me pergunte a utilidade disto!) basta aumentar o número de asteriscos na declaracão. A lógica é a mesma. Para acessar o valor desejado apontado por um ponteiro para ponteiro, o operador asterisco deve ser aplicado duas vezes, como mostrado no exemplo abaixo: docsity.com 51 #include <stdio.h> int main() { float fpi = 3.1415, *pf, **ppf; pf = &fpi; /* pf armazena o endereco de fpi */ ppf = &pf; /* ppf armazena o endereco de pf */ printf("%f", **ppf); /* Imprime o valor de fpi */ printf("%f", *pf); /* Tambem imprime o valor de fpi */ return(0); } AUTO AVALIAÇÃO Veja como você está. Verifique o programa abaixo. Encontre o seu erro e corrija-o para que escreva o numero 10 na tela. #include <stdio.h> int main() { int x, *p, **q; p = &x; q = &p; x = 10; printf("\n%d\n", &q); return(0); } Cuidados a Serem Tomados ao se Usar Ponteiros O principal cuidado ao se usar um ponteiro deve ser: saiba sempre para onde o ponteiro está apontando. Isto inclui: nunca use um ponteiro que não foi inicializado. Um pequeno programa que demonstra como não usar um ponteiro: docsity.com 52 int main () /* Errado - Nao Execute */ { int x,*p; x=13; *p=x; return(0); } Este programa compilará e rodará. O que acontecerá? Ninguém sabe. O ponteiro p pode estar apontando para qualquer lugar. Você estará gravando o número 13 em um lugar desconhecido. Com um número apenas, você provavelmente não vai ver nenhum defeito. Agora, se você começar a gravar números em posições aleatórias no seu computador, não vai demorar muito para travar o micro (se não acontecer coisa pior). AUTO AVALIAÇÃO Veja como você está. Escreva um programa que declare uma matriz 100x100 de inteiros. Você deve inicializar a matriz com zeros usando ponteiros para endereçar seus elementos. Preencha depois a matriz com os números de 1 a 10000, também usando ponteiros. docsity.com 55 Veja como você está. Escreva a função 'EDivisivel(int a, int b)' (tome como base EPar(int a)). A função deverá retornar 1 se o resto da divisão de a por b for zero. Caso contrário, a função deverá retornar zero. Protótipos de Funções Até agora, nos exemplos apresentados, escrevemos as funções antes de escrevermos a função main(). Isto é, as funções estão fisicamente antes da função main(). Isto foi feito por uma razão. Imagine-se na pele do compilador. Se você fosse compilar a função main(), onde são chamadas as funções, você teria que saber com antecedência quais são os tipos de retorno e quais são os parâmetros das funções para que você pudesse gerar o código corretamente. Foi por isto as funções foram colocadas antes da função main(): quando o compilador chegasse à função main() ele já teria compilado as funções e já saberia seus formatos. Mas, muitas vezes, não poderemos nos dar ao luxo de escrever nesta ordem. Muitas vezes teremos o nosso programa espalhado por vários arquivos. Ou seja, estaremos chamando funções em um arquivo que serão compiladas em outro arquivo. Como manter a coerência? A solução são os protótipos de funções. Protótipos são nada mais, nada menos, que declarações de funções. Isto é, você declara uma função que irá usar. O compilador toma então conhecimento do formato daquela função antes de compilá-la. O código correto será então gerado. Um protótipo tem o seguinte formato: tipo_de_retorno nome_da_função (declaração_de_parâmetros); onde o tipo-de-retorno, o nome-da-função e a declaração-de-parâmetros são os mesmos que você pretende usar quando realmente escrever a função. Repare que os protótipos têm uma nítida semelhança com as declarações de variáveis. Vamos implementar agora um dos exemplos da seção anterior com algumas alterações e com protótipos: #include <stdio.h> float Square (float a); int main () { float num; printf ("Entre com um numero: "); scanf ("%f",&num); num=Square(num); printf ("\n\nO seu quadrado vale: %f\n",num); return 0; } float Square (float a) { return (a*a); } Observe que a função Square() está colocada depois de main(), mas o seu protótipo está antes. Sem isto este programa não funcionaria corretamente. Usando protótipos você pode construir funções que retornam quaisquer tipos de variáveis. É bom ressaltar que funções podem também retornar ponteiros sem qualquer problema. Os protótipos não só ajudam o compilador. Eles ajudam a você também: usando protótipos, o compilador evita erros, não deixando que o programador use funções com os parâmetros errados e com o tipo de retorno errado, o que é uma grande ajuda! docsity.com 56 O Tipo void Agora vamos ver o único tipo da linguagem C que não detalhamos ainda: o void. Em inglês, void quer dizer vazio e é isto mesmo que o void é. Ele nos permite fazer funções que não retornam nada e funções que não têm parâmetros! Podemos agora escrever o protótipo de uma função que não retorna nada: void nome_da_função (declaração_de_parâmetros); Numa função, como a acima, não temos valor de retorno na declaração return. Aliás, neste caso, o comando return não é necessário na função. Podemos, também, fazer funções que não têm parâmetros: tipo_de_retorno nome_da_função (void); ou, ainda, que não tem parâmetros e não retornam nada: void nome_da_função (void); Um exemplo de funções que usam o tipo void: #include <stdio.h> void Mensagem (void); int main () { Mensagem(); printf ("\tDiga de novo:\n"); Mensagem(); return 0; } void Mensagem (void) { printf ("Ola! Eu estou vivo.\n"); } Se quisermos que a função retorne algo, devemos usar a declaração return. Se não quisermos, basta declarar a função como tendo tipo-de-retorno void. Devemos lembrar agora que a função main() é uma função e como tal devemos tratá-la. O compilador acha que a função main() deve retornar um inteiro. Isto pode ser interessante se quisermos que o sistema operacional receba um valor de retorno da função main(). Se assim o quisermos, devemos nos lembrar da seguinte convenção: se o programa retornar zero, significa que ele terminou normalmente, e, se o programa retornar um valor diferente de zero, significa que o programa teve um término anormal. Se não estivermos interessados neste tipo de coisa, basta declarar a função main como retornando void. As duas funções main() abaixo são válidas: main (void) { .... return 0; docsity.com 57 } void main (void) { .... } A primeira forma é válida porque, como já vimos, as funções em C têm, por padrão, retorno inteiro.. Alguns compiladores reclamarão da segunda forma de main, dizendo que main sempre deve retornar um inteiro. Se isto acontecer com o compilador que você está utilizando, basta fazer main retornar um inteiro. Arquivos-Cabeçalhos Arquivos-cabeçalhos são aqueles que temos mandado o compilador incluir no início de nossos exemplos e que sempre terminam em .h. A extensão .h vem de header (cabeçalho em inglês). Já vimos exemplos como stdio.h, conio.h, string.h. Estes arquivos, na verdade, não possuem os códigos completos das funções. Eles só contêm protótipos de funções. É o que basta. O compilador lê estes protótipos e, baseado nas informações lá contidas, gera o código correto. O corpo das funções cujos protótipos estão no arquivo-cabeçalho, no caso das funções do próprio C, já estão compiladas e normalmente são incluídas no programa no instante da "linkagem". Este é o instante em que todas as referências a funções cujos códigos não estão nos nossos arquivos fontes são resolvidas, buscando este código nos arquivos de bibliotecas. Se você criar algumas funções que queira aproveitar em vários programas futuros, ou módulos de programas, você pode escrever arquivos-cabeçalhos e incluí-los também. Suponha que a função 'int EPar(int a)', do segundo exemplo da página 54 seja importante em vários programas, e desejemos declará-la num módulo separado. No arquivo de cabeçalho chamado por exemplo de 'funcao.h' teremos a seguinte declaração: int EPar(int a); O código da função será escrito num arquivo a parte. Vamos chamá-lo de 'funcao.c'. Neste arquivo teremos a definição da função: int EPar (int a) { if (a%2) /* Verifica se a e divisivel por dois */ return 0; else return 1; } Por fim, no arquivo do programa principal teremos o programa principal. Vamos chamar este arquivo aqui de 'princip.c'. #include <stdio.h> #include "funcao.h" void main () { int num; printf ("Entre com numero: "); scanf ("%d",&num); if (EPar(num)) printf ("\n\nO numero e par.\n"); else docsity.com 60 z=10; ... } main () { int count; ... } No exemplo acima as variáveis z e k são globais. Veja que func2() tem uma variável local chamada z. Quando temos então, em func2(), o comando z=10 quem recebe o valor de 10 é a variável local, não afetando o valor da variável global z. Evite ao máximo o uso de variáveis globais. Elas ocupam memória o tempo todo (as locais só ocupam memória enquanto estão sendo usadas) e tornam o programa mais difícil de ser entendido e menos geral. AUTO AVALIAÇÃO Veja como você está. Estude o seguinte programa e aponte o valor de cada variável sempre que solicitado: #include <stdio.h> int num; int func(int a, int b) { a = (a+b)/2; /* Qual e o valor de a apos a atribuicao? */ num -= a; return a; } main() { int first = 0, sec = 50; num = 10; num += func(first, sec); /* Qual e o valor de num, first e sec */ /* antes e depois da atribuicao? */ printf("\n\nConfira! num = %d\tfirst = %d\tsec = %d",num, first, sec); Passagem de parâmetros por valor e passagem por referência Já vimos que, na linguagem C, quando chamamos uma função os parâmetros formais da função copiam os valores dos parâmetros que são passados para a função. Isto quer dizer que não são alterados os valores que os parâmetros têm fora da função. Este tipo de chamada de função é denominado chamada por valor. Isto ocorre porque são passados para a função apenas os valores dos parâmetros e não os próprios parâmetros. Veja o exemplo abaixo: #include <stdio.h> float sqr (float num); void main () { float num,sq; docsity.com 61 printf ("Entre com um numero: "); scanf ("%f",&num); sq=sqr(num); printf ("\n\nO numero original e: %f\n",num); printf ("O seu quadrado vale: %f\n",sq); } float sqr (float num) { num=num*num; return num; } No exemplo acima o parâmetro formal num da função sqr() sofre alterações dentro da função, mas a variável num da função main() permanece inalterada: é uma chamada por valor. Outro tipo de passagem de parâmetros para uma função ocorre quando alterações nos parâmetros formais, dentro da função, alteram os valores dos parâmetros que foram passados para a função. Este tipo de chamada de função tem o nome de "chamada por referência". Este nome vem do fato de que, neste tipo de chamada, não se passa para a função os valores das variáveis, mas sim suas referências (a função usa as referências para alterar os valores das variáveis fora da função). O C só faz chamadas por valor. Isto é bom quando queremos usar os parâmetros formais à vontade dentro da função, sem termos que nos preocupar em estar alterando os valores dos parâmetros que foram passados para a função. Mas isto também pode ser ruim às vezes, porque podemos querer mudar os valores dos parâmetros fora da função também. O C++ tem um recurso que permite ao programador fazer chamadas por referência. Há entretanto, no C, um recurso de programação que podemos usar para simular uma chamada por referência. Quando queremos alterar as variáveis que são passadas para uma função, nós podemos declarar seus parâmetros formais como sendo ponteiros. Os ponteiros são a "referência" que precisamos para poder alterar a variável fora da função. O único inconveniente é que, quando usarmos a função, teremos de lembrar de colocar um & na frente das variáveis que estivermos passando para a função. Veja um exemplo: #include <stdio.h> void Swap (int *a,int *b); void main (void) { int num1,num2; num1=100; num2=200; Swap (&num1,&num2); printf ("\n\nEles agora valem %d %d\n",num1,num2); } void Swap (int *a,int *b) { int temp; temp=*a; *a=*b; docsity.com 62 *b=temp; } Não é muito difícil. O que está acontecendo é que passamos para a função Swap o endereço das variáveis num1 e num2. Estes endereços são copiados nos ponteiros a e b. Através do operador * estamos acessando o conteúdo apontado pelos ponteiros e modificando- o. Mas, quem é este conteúdo? Nada mais que os valores armazenados em num1 e num2, que, portanto, estão sendo modificados! Espere um momento... será que nós já não vimos esta estória de chamar uma função com as variáveis precedidas de &? Já! É assim que nós chamamos a função scanf(). Mas porquê? Vamos pensar um pouco. A função scanf() usa chamada por referência porque ela precisa alterar as variáveis que passamos para ela! Não é para isto mesmo que ela é feita? Ela lê variáveis para nós e portanto precisa alterar seus valores. Por isto passamos para a função o endereço da variável a ser modificada! AUTO AVALIAÇÃO Veja como você está: Escreva uma função que receba duas variáveis inteiras e "zere" o valor das variáveis. Use o que você aprendeu nesta página para fazer a implementação. Vetores como Argumentos de Funções Quando vamos passar um vetor como argumento de uma função, podemos declarar a função de três maneiras equivalentes. Seja o vetor: int matrx [50]; e que queiramos passá-la como argumento de uma função func(). Podemos declarar func() das três maneiras seguintes: void func (int matrx[50]); void func (int matrx[]); void func (int *matrx); Nos três casos, teremos dentro de func() um int* chamado matrx. Ao passarmos um vetor para uma função, na realidade estamos passando um ponteiro. Neste ponteiro é armazenado o endereço do primeiro elemento do vetor. Isto significa que não é feita uma cópia, elemento a elemento do vetor. Isto faz com que possamos alterar o valor dos elementos do vetor dentro da função. Um exemplo disto já foi visto quando implementamos a função StrCpy(). AUTO AVALIAÇÃO Veja como você está. Escreva um programa que leia um vetor de inteiros pelo teclado e o apresente na tela. Crie uma função (void levetor(int *vet, int dimensao)) para fazer a leitura do vetor. Os Argumentos argc e argv A função main() pode ter parâmetros formais. Mas o programador não pode escolher quais serão eles. A declaração mais completa que se pode ter para a função main() é: docsity.com 65 Capítulo – 8 (DIRETIVAS DE COMPILAÇÃO) As Diretivas de Compilação O pré-processador C é um programa que examina o programa fonte escrito em C e executa certas modificações nele, baseado nas Diretivas de Compilação. As diretivas de compilação são comandos que não são compilados, sendo dirigidos ao pré-processador, que é executado pelo compilador antes da execução do processo de compilação propriamente dito. Portanto, o pré-processador modifica o programa fonte, entregando para o compilador um programa modificado. Todas as diretivas de compilação são iniciadas pelo caracter #. As diretivas podem ser colocadas em qualquer parte do programa. Já vimos, e usamos muito, a diretiva #include. Sabemos que ela não gera código mas diz ao compilador que ele deve incluir um arquivo externo na hora da compilação. As diretivas do C são identificadas por começarem por #. As diretivas que estudaremos são definidas pelo padrão ANSI: #if #else #include #ifdef #elif #define #ifndef #endif #undef Procuraremos ser breves em suas descrições... A Diretiva include A diretiva #include já foi usada durante o nosso curso diversas vezes. Ela diz ao compilador para incluir, na hora da compilação, um arquivo especificado. Sua forma geral é: #include "nome_do_arquivo" ou #include <nome_do_arquivo> A diferença entre se usar " " e < > é somente a ordem de procura nos diretórios pelo arquivo especificado. Se você quiser informar o nome do arquivo com o caminho completo, ou se o arquivo estiver no diretório de trabalho, use " ". Se o arquivo estiver nos caminhos de procura pré-especificados do compilador, isto é, se ele for um arquivo do próprio sistema (como é o caso de arquivos como stdio.h, string.h, etc...) use < >. Observe que não há ponto e vírgula após a diretiva de compilação. Esta é uma característica importante de todas as diretivas de compilação e não somente da diretiva #include As Diretivas define e undef A diretiva #define tem a seguinte forma geral: #define nome_da_macro sequência_de_caracteres docsity.com 66 Quando você usa esta diretiva, você está dizendo ao compilador para que, toda vez que ele encontrar o nome_da_macro no programa a ser compilado, ele deve substituí-lo pela sequência_de_caracteres fornecida. Isto é muito útil para deixar o programa mais geral. Veja um exemplo: #include <stdio.h> #define PI 3.1416 #define VERSAO "2.02" int main () { printf ("Programa versao %s",VERSAO); printf ("O numero pi vale: %f",PI); return 0; } Se quisermos mudar o nosso valor de PI, ou da VERSAO, no programa acima, basta mexer no início do programa. Isto torna o programa mais flexível. Há quem diga que, em um programa, nunca se deve usar constantes como 10, 3.1416, etc., pois estes são números que ninguém sabe o que significam (muitas pessoas os chamam de "números mágicos"). Ao invés disto, deve-se usar apenas #defines. É uma convenção de programação (que deve ser seguida, pois torna o programa mais legível) na linguagem C que as macros declaradas em #defines devem ser todas em maiúsculas. Um outro uso da diretiva #define é o de simplesmente definir uma macro. Neste caso usa-se a seguinte forma geral: #define nome_da_macro Neste caso o objetivo não é usar a macro no programa (pois ela seria substituída por nada), mas, sim, definir uma macro para ser usada como uma espécie de flag. Isto quer dizer que estamos definindo um valor como sendo "verdadeiro" para depois podermos testá-lo. Também é possível definir macros com argumentos. Veja o exemplo a seguir: #define max(A,B) ((A>B) ? (A):(B)) #define min(A,B) ((A<B) ? (A):(B)) ... x = max(i,j); y = min(t,r); Embora pareça uma chamada de função, o uso de max (ou min) simplesmente substitui, em tempo de compilação, o código especificado. Cada ocorrência de um parâmetro formal (A ou B, na definição) será substituído pelo argumento real correspondente. Assim, a linha de código: x = max(i,j); será substituída pela linha: x = ((i)>(j) ? (i):(j)); A linha de código: x = max(p+q,r+s); será substituída pela linha: docsity.com 67 x = ((p+q)>(r+s) ? (p+q):(r+s)); Isto pode ser muito útil. Verifique que as macros max e min não possuem especificação de tipo. Logo, elas trabalham corretamente para qualquer tipo de dado, enquanto os argumentos passados forem coerentes. Mas isto pode trazer também algumas armadilhas. Veja que a linha x = max(p++,r++); será substituída pelo código x = ((p++)>(r++) ? (p++):(r++)); e em consequência, incrementará o maior valor duas vezes. Outra armadilha em macros está relacionada com o uso de parênteses. Seja a macro: #define SQR(X) X*X Imagine que você utilize esta macro na expressão abaixo: y = SQR(A+B); Ao fazer isto, a substituição que será efetuada não estará correta. A expressão gerada será: y = A+B*A+B; que obviamente é diferente de (A+B)*(A+B) ! A solução para este problema é incluir parênteses na definição da macro: #define SQR(X)(X)*(X) Quando você utiliza a diretiva #define nunca deve haver espaços em branco no identificador. Por exemplo, a macro: #define PRINT (i) printf(" %d \n", i) não funcionará corretamente porque existe um espaço em branco entre PRINT e (i). Ao se tirar o espaço, a macro funcionará corretamente e poderá ser utilizada para imprimir o número inteiro i, saltando em seguida para a próxima linha. A diretiva #undef tem a seguinte forma geral: #undef nome_da_macro Ela faz com que a macro que a segue seja apagada da tabela interna que guarda as macros.O compilador passa a partir deste ponto a não conhecer mais esta macro. AUTO AVALIAÇÃO docsity.com 70 Capítulo – 8 (Entradas e Saídas Padronizadas) Introdução O sistema de entrada e saída da linguagem C está estruturado na forma de uma biblioteca de funções. Já vimos algumas destas funções, e agora elas serão reestudadas. Novas funções também serão apresentadas. Não é objetivo deste curso explicar, em detalhes, todas as possíveis funções da biblioteca de entrada e saída do C. A sintaxe completa destas funções pode ser encontrada no manual do seu compilador. Alguns sistemas trazem uma descrição das funções na ajuda do compilador, que pode ser acessada "on line". Isto pode ser feito, por exemplo, no Rhide. Um ponto importante é que agora, quando apresentarmos uma função, vamos, em primeiro lugar, apresentar o seu protótipo. Você já deve ser capaz de interpretar as informações que um protótipo nos passa. Se não, deve voltar a estudar a aula sobre funções. Outro aspecto importante, quando se discute a entrada e saída na linguagem C é o conceito de fluxo. Seja qual for o dispositivo de entrada e saída (discos, terminais, teclados, acionadores de fitas) que se estiver trabalhando, o C vai enxergá-lo como um fluxo, que nada mais é que um dispositivo lógico de entrada ou saída. Todos os fluxos são similares em seu funcionamento e independentes do dispositivo ao qual estão associados. Assim, as mesmas funções que descrevem o acesso aos discos podem ser utilizadas para se acessar um terminal de vídeo. Todas as operações de entrada e saída são realizadas por meio de fluxos. Na linguagem C, um arquivo é entendido como um conceito que pode ser aplicado a arquivos em disco, terminais, modens, etc ... Um fluxo é associado a um arquivo através da realização de uma operação de abertura. Uma vez aberto, informações podem ser trocadas entre o arquivo e o programa. Um arquivo é dissociado de um fluxo através de uma operação de fechamento de arquivo. Lendo e Escrevendo Caracteres Uma das funções mais básicas de um sistema é a entrada e saída de informações em dispositivos. Estes podem ser um monitor, uma impressora ou um arquivo em disco. Vamos ver os principais comandos que o C nos fornece para isto. getche e getch As funções getch() e getche() não são definidas pelo padrão ANSI. Porém, elas geralmente são incluídas em compiladores baseados no DOS, e se encontram no header file conio.h. Vale a pena repetir: são funções comuns apenas para compiladores baseados em DOS e, se você estiver no UNIX normalmente não terá estas funções disponíveis. Protótipos: docsity.com 71 int getch (void); int getche (void); getch() espera que o usuário digite uma tecla e retorna este caractere. Você pode estar estranhando o fato de getch() retornar um inteiro, mas não há problema pois este inteiro é tal que quando igualado a um char a conversão é feita corretamente. A função getche() funciona exatamente como getch(). A diferença é que getche() gera um "echo" na tela antes de retornar a tecla. Se a tecla pressionada for um caractere especial estas funções retornam zero. Neste caso você deve usar as funções novamente para pegar o código da tecla extendida pressionada. A função equivalente a getche() no mundo ANSI é o getchar(). O problema com getchar é que o caracter lido é colocado em uma área intermediária até que o usuário digite um <ENTER>, o que pode ser extremamente inconveniente em ambientes interativos. putchar Protótipo: int putchar (int c); putchar() coloca o caractere c na tela. Este caractere é colocado na posição atual do cursor. Mais uma vez os tipos são inteiros, mas você não precisa se preocupar com este fato. O header file é stdio.h. Lendo e Escrevendo Strings gets Protótipo: char *gets (char *s); Pede ao usuário que entre uma string, que será armazenada na string s. O ponteiro que a função retorna é o próprio s. gets não é uma função segura. Por quê? Simplesmente porque com gets pode ocorrer um estouro da quantidade de posições que foi especificada na string. Veja o exemplo abaixo: #include <stdio.h> int main() { char buffer[10]; printf("Entre com o seu nome"); gets(buffer); printf("O nome é: %s", buffer); return 0; } Se o usuário digitar como entrada: Renato Cardoso Mesquita ou seja, digitar um total de 23 caracteres: 24 posições (incluindo o '\0' ) serão utilizadas para armazenar a string. Como a string buffer[] só tem 10 caracteres, os 14 caracteres adicionais serão colocados na área de memória subsequente à ocupada por ela, escrevendo uma região de memória que não está reservada à string. Este efeito é conhecido como docsity.com 72 "estouro de buffer" e pode causar problemas imprevisíveis. Uma forma de se evitar este problema é usar a função fgets, conforme veremos posteriormente. puts Protótipo: int puts (char *s); puts() coloca a string s na tela. AUTO AVALIAÇÃO Veja como você está. Escreva um programa que leia nomes pelo teclado e os imprima na tela. Use as funções puts e gets para a leitura e impressão na tela. Entrada e Saída Formatada As funções que resumem todas as funções de entrada e saída formatada no C são as funções printf() e scanf(). Um domínio destas funções é fundamental ao programador. printf Protótipo: int printf (char *str,...); As reticências no protótipo da função indicam que esta função tem um número de argumentos variável. Este número está diretamente relacionado com a string de controle str, que deve ser fornecida como primeiro argumento. A string de controle tem dois componentes. O primeiro são caracteres a serem impressos na tela. O segundo são os comandos de formato. Como já vimos, os últimos determinam uma exibição de variáveis na saída. Os comandos de formato são precedidos de %. A cada comando de formato deve corresponder um argumento na função printf(). Se isto não ocorrer podem acontecer erros imprevisíveis no programa. Abaixo apresentamos a tabela de códigos de formato: Código Formato %c Um caracter (char) %d Um número inteiro decimal (int) %i O mesmo que %d %e Número em notação científica com o "e"minúsculo %E Número em notação científica com o "e"maiúsculo %f Ponto flutuante decimal %g Escolhe automaticamente o melhor entre %f e %e %G Escolhe automaticamente o melhor entre %f e %E %o Número octal %s String docsity.com 75 { int i, j, k; char string1[]= "10 20 30"; sscanf(string1, "%d %d %d", &i, &j, &k); printf("Valores lidos: %d, %d, %d", i, j, k); return 0; } AUTO AVALIAÇÃO Veja como você está. Escreva um programa que leia (via teclado) e apresente uma matriz 3X3 na tela. Utilize os novos códigos de formato aprendidos para que a matriz se apresente corretamente identada. Altere os tipos de dados da matriz (int, float, double) e verifique a formatação correta para a identação. Verifique também a leitura e impressão de números hexadecimais. Abrindo e Fechando um Arquivo O sistema de entrada e saída do ANSI C é composto por uma série de funções, cujos protótipos estão reunidos em stdio.h . Todas estas funções trabalham com o conceito de "ponteiro de arquivo". Este não é um tipo propriamente dito, mas uma definição usando o comando typedef. Esta definição também está no arquivo stdio.h. Podemos declarar um ponteiro de arquivo da seguinte maneira: FILE *p; p será então um ponteiro para um arquivo. É usando este tipo de ponteiro que vamos poder manipular arquivos no C. fopen Esta é a função de abertura de arquivos. Seu protótipo é: FILE *fopen (char *nome_do_arquivo,char *modo); O nome_do_arquivo determina qual arquivo deverá ser aberto. Este nome deve ser válido no sistema operacional que estiver sendo utilizado. O modo de abertura diz à função fopen() que tipo de uso você vai fazer do arquivo. A tabela abaixo mostra os valores de modo válidos: Modo Significado "r" Abre um arquivo texto para leitura. O arquivo deve existir antes de ser aberto. "w" Abrir um arquivo texto para gravação. Se o arquivo não existir, ele será criado. Se já existir, o conteúdo anterior será destruído. "a" Abrir um arquivo texto para gravação. Os dados serão adicionados no fim do arquivo ("append"), se ele já existir, ou um novo arquivo será criado, no caso de arquivo não existente anteriormente. "rb" Abre um arquivo binário para leitura. Igual ao modo "r" anterior, só que o arquivo é binário. "wb" Cria um arquivo binário para escrita, como no modo "w" anterior, só que o arquivo é binário. "ab" Acrescenta dados binários no fim do arquivo, como no modo "a" anterior, só que o docsity.com 76 arquivo é binário. "r+" Abre um arquivo texto para leitura e gravação. O arquivo deve existir e pode ser modificado. "w+" Cria um arquivo texto para leitura e gravação. Se o arquivo existir, o conteúdo anterior será destruído. Se não existir, será criado. "a+" Abre um arquivo texto para gravação e leitura. Os dados serão adicionados no fim do arquivo se ele já existir, ou um novo arquivo será criado, no caso de arquivo não existente anteriormente. "r+b" Abre um arquivo binário para leitura e escrita. O mesmo que "r+" acima, só que o arquivo é binário. "w+b" Cria um arquivo binário para leitura e escrita. O mesmo que "w+" acima, só que o arquivo é binário. "a+b" Acrescenta dados ou cria uma arquivo binário para leitura e escrita. O mesmo que "a+" acima, só que o arquivo é binário Poderíamos então, para abrir um arquivo binário para escrita, escrever: FILE *fp; /* Declaração da estrutura fp=fopen ("exemplo.bin","wb"); /* o arquivo se chama exemplo.bin e está localizado no diretório corrente */ if (!fp) printf ("Erro na abertura do arquivo."); A condição !fp testa se o arquivo foi aberto com sucesso porque no caso de um erro a função fopen() retorna um ponteiro nullo (NULL). Uma vez aberto um arquivo, vamos poder ler ou escrever nele utilizando as funções que serão apresentadas nas próximas páginas. Toda vez que estamos trabalhando com arquivos, há uma espécie de posição atual no arquivo. Esta é a posição de onde será lido ou escrito o próximo caractere. Normalmente, num acesso sequencial a um arquivo, não temos que mexer nesta posição pois quando lemos um caractere a posição no arquivo é automaticamente atualizada. Num acesso randômico teremos que mexer nesta posição (ver fseek()). exit Aqui abrimos um parênteses para explicar a função exit() cujo protótipo é: void exit (int codigo_de_retorno); Para utilizá-la deve-se colocar um include para o arquivo de cabeçalho stdlib.h. Esta função aborta a execução do programa. Pode ser chamada de qualquer ponto no programa e faz com que o programa termine e retorne, para o sistema operacional, o código_de_retorno. A convenção mais usada é que um programa retorne zero no caso de um término normal e retorne um número não nulo no caso de ter ocorrido um problema. A função exit() se torna importante em casos como alocação dinâmica e abertura de arquivos pois nestes casos, se o programa não conseguir a memória necessária ou abrir o arquivo, a melhor saída pode ser terminar a execução do programa. Poderíamos reescrever o exemplo da seção anterior usando agora o exit() para garantir que o programa não deixará de abrir o arquivo: #include <stdio.h> #include <stdlib.h> /* Para a função exit() */ main (void) { FILE *fp; docsity.com 77 ... fp=fopen ("exemplo.bin","wb"); if (!fp) { printf ("Erro na abertura do arquivo. Fim de programa."); exit (1); } ... return 0; } fclose Quando acabamos de usar um arquivo que abrimos, devemos fechá-lo. Para tanto usa-se a função fclose(): int fclose (FILE *fp); O ponteiro fp passado à função fclose() determina o arquivo a ser fechado. A função retorna zero no caso de sucesso. Fechar um arquivo faz com que qualquer caracter que tenha permanecido no "buffer" associado ao fluxo de saída seja gravado. Mas, o que é este "buffer"? Quando você envia caracteres para serem gravados em um arquivo, estes caracteres são armazenados temporariamente em uma área de memória (o "buffer") em vez de serem escritos em disco imediatamente. Quando o "buffer" estiver cheio, seu conteúdo é escrito no disco de uma vez. A razão para se fazer isto tem a ver com a eficiência nas leituras e gravações de arquivos. Se, para cada caracter que fossemos gravar, tivéssemos que posicionar a cabeça de gravação em um ponto específico do disco, apenas para gravar aquele caracter, as gravações seriam muito lentas. Assim estas gravações só serão efetuadas quando houver um volume razoável de informações a serem gravadas ou quando o arquivo for fechado. A função exit() fecha todos os arquivos que um programa tiver aberto. Lendo e Escrevendo Caracteres em Arquivos putc A função putc é a primeira função de escrita de arquivo que veremos. Seu protótipo é: int putc (int ch,FILE *fp); Escreve um caractere no arquivo. O programa a seguir lê uma string do teclado e escreve-a, caractere por caractere em um arquivo em disco (o arquivo arquivo.txt, que será aberto no diretório corrente). #include <stdio.h> #include <stdlib.h> int main() { FILE *fp; char string[100]; int i; fp = fopen("arquivo.txt","w"); /* Arquivo ASCII, para escrita */ if(!fp) { docsity.com 80 • stdprn : dispositivo de impressão padrão (em muitos sistemas, associado à porta paralela) Cada uma destas constantes pode ser utilizada como um ponteiro para FILE, para acessar os periféricos associados a eles. Desta maneira, pode-se, por exemplo, usar: ch =getc(stdin); para efetuar a leitura de um caracter a partir do teclado, ou : putc(ch, stdout); para imprimí-lo na tela. fgets Para se ler uma string num arquivo podemos usar fgets() cujo protótipo é: char *fgets (char *str, int tamanho,FILE *fp); A função recebe 3 argumentos: a string a ser lida, o limite máximo de caracteres a serem lidos e o ponteiro para FILE, que está associado ao arquivo de onde a string será lida. A função lê a string até que um caracter de nova linha seja lido ou tamanho-1 caracteres tenham sido lidos. Se o caracter de nova linha ('\n') for lido, ele fará parte da string, o que não acontecia com gets. A string resultante sempre terminará com '\0' (por isto somente tamanho-1 caracteres, no máximo, serão lidos). A função fgets é semelhante à função gets() porém, além dela poder fazer a leitura a partir de um arquivo de dados e incluir o caracter de nova linha na string, ela ainda especifica o tamanho máximo da string de entrada. Como vimos, a função gets não tinha este controle, o que poderia acarretar erros de "estouro de buffer". Portanto, levando em conta que o ponteiro fp pode ser substituído por stdin, como vimos acima, uma alternativa ao uso de gets é usar a seguinte construção: fgets (str, tamanho, stdin); onde str e' a string que se está lendo e tamanho deve ser igual ao tamanho alocado para a string subtraído de 1, por causa do '\0'. fputs Protótipo: char *fputs (char *str,FILE *fp); Escreve uma string num arquivo. ferror e perror Protótipo de ferror: int ferror (FILE *fp); A função retorna zero, se nenhum erro ocorreu e um número diferente de zero se algum erro ocorreu durante o acesso ao arquivo. ferror() se torna muito útil quando queremos verificar se cada acesso a um arquivo teve sucesso, de modo que consigamos garantir a integridade dos nossos dados. Na maioria dos casos, se um arquivo pode ser aberto, ele pode ser lido ou gravado. Porém, existem situações docsity.com 81 em que isto não ocorre. Por exemplo, pode acabar o espaço em disco enquanto gravamos, ou o disco pode estar com problemas e não conseguimos ler, etc. Uma função que pode ser usada em conjunto com ferror() é a função perror() (print error), cujo argumento é uma string que normalmente indica em que parte do programa o problema ocorreu. No exemplo a seguir, fazemos uso de ferror, perror e fputs #include <stdio.h> #include <stdlib.h> int main() { FILE *pf; char string[100]; if((pf = fopen("arquivo.txt","w")) ==NULL) { printf("\nNao consigo abrir o arquivo ! "); exit(1); } do { printf("\nDigite uma nova string. Para terminar, digite <enter>: "); gets(string); fputs(string, pf); putc('\n', pf); if(ferror(pf)) { perror("Erro na gravacao"); fclose(pf); exit(1); } } while (strlen(string) > 0); fclose(pf); } fread Podemos escrever e ler blocos de dados. Para tanto, temos as funções fread() e fwrite(). O protótipo de fread() é: unsigned fread (void *buffer, int numero_de_bytes, int count, FILE *fp); O buffer é a região de memória na qual serão armazenados os dados lidos. O número de bytes é o tamanho da unidade a ser lida. count indica quantas unidades devem ser lidas. Isto significa que o número total de bytes lidos é: numero_de_bytes*count A função retorna o número de unidades efetivamente lidas. Este número pode ser menor que count quando o fim do arquivo for encontrado ou ocorrer algum erro. Quando o arquivo for aberto para dados binários, fread pode ler qualquer tipo de dados. fwrite A função fwrite() funciona como a sua companheira fread(), porém escrevendo no arquivo. Seu protótipo é: docsity.com 82 unsigned fwrite(void *buffer,int numero_de_bytes,int count,FILE *fp); A função retorna o número de itens escritos. Este valor será igual a count a menos que ocorra algum erro. O exemplo abaixo ilustra o uso de fwrite e fread para gravar e posteriormente ler uma variável float em um arquivo binário. #include <stdio.h> #include <stdlib.h> int main() { FILE *pf; float pi = 3.1415; float pilido; if((pf = fopen("arquivo.bin", "wb")) == NULL) /* Abre arquivo binário para escrita */ { printf("Erro na abertura do arquivo"); exit(1); } if(fwrite(&pi, sizeof(float), 1,pf) != 1) /* Escreve a variável pi */ printf("Erro na escrita do arquivo"); fclose(pf); /* Fecha o arquivo */ if((pf = fopen("arquivo.bin", "rb")) == NULL) /* Abre o arquivo novamente para leitura */ { printf("Erro na abertura do arquivo"); exit(1); } if(fread(&pilido, sizeof(float), 1,pf) != 1) /* Le em pilido o valor da variável armazenada anteriormente */ printf("Erro na leitura do arquivo"); printf("\nO valor de PI, lido do arquivo e': %f", pilido); fclose(pf); return(0); } Note-se o uso do operador sizeof, que retorna o tamanho em bytes da variável ou do tipo de dados. fseek Para se fazer procuras e acessos randômicos em arquivos usa-se a função fseek(). Esta move a posição corrente de leitura ou escrita no arquivo de um valor especificado, a partir de um ponto especificado. Seu protótipo é: int fseek (FILE *fp,long numbytes,int origem); O parâmetro origem determina a partir de onde os numbytes de movimentação serão contados. Os valores possíveis são definidos por macros em stdio.h e são: Nome Valor Significado SEEK_SET 0 Início do arquivo SEEK_CUR 1 Ponto corrente no arquivo SEEK_END 2 Fim do arquivo docsity.com 85 } fclose(p); return(0); } AUTO AVALIAÇÃO Veja como você está. Escreva um programa que leia uma lista de nomes e idades de um arquivo texto. Prepare um arquivo para ser lido com nomes e idades. Apresente os dados lidos em forma de tabela na tela. Use as funções de sua preferência, mas faça pelo menos duas versões do programa usando funções de leitura diferentes. docsity.com 86 Capítulo – 9 (Tipos de Dados Avançados) Modificadores de Acesso Estes modificadores, como o próprio nome indica, mudam a maneira com a qual a variável é acessada e modificada. const O modificador const faz com que a variável não possa ser modificada no programa. Como o nome já sugere é útil para se declarar constantes. Poderíamos ter, por exemplo: const float PI=3.141; Podemos ver pelo exemplo que as variáveis com o modificador const podem ser inicializadas. Mas PI não poderia ser alterado em qualquer outra parte do programa. Se o programador tentar modificar PI o compilador gerará um erro de compilação. O uso mais importante de const não é declarar variáveis constantes no programa. Seu uso mais comum é evitar que um parâmetro de uma função seja alterado pela função. Isto é muito útil no caso de um ponteiro, pois o conteúdo de um ponteiro pode ser alterado por uma função. Para tanto, basta declarar o parâmetro como const. Veja o exemplo: #include <stdio.h> int sqr (const int *num); main (void) { int a=10; int b; b=sqr (&a); } int sqr (const int *num) { return ((*num)*(*num)); } No exemplo, num está protegido contra alterações. Isto quer dizer que, se tentássemos fazer *num=10; dentro da função sqr() o compilador daria uma mensagem de erro. volatile O modificador volatile diz ao compilador que a variável em questão pode ser alterada sem que este seja avisado. Isto evita "bugs" seríssimos. Digamos que, por exemplo, tenhamos uma variável que o BIOS do computador altera de minuto em minuto (um relógio por exemplo). Seria muito bom que declarássemos esta variável como sendo volatile. Especificadores de Classe de Armazenamento docsity.com 87 Estes modificadores de tipo atuam sobre a maneira com a qual o compilador vai armazenar a variável. auto O especificador de classe de armazenamento auto define variáveis automáticas, isto é, variáveis locais. Raramente usado pois todas as variáveis locais do C são auto por definição. extern O extern define variáveis que serão usadas em um arquivo apesar de terem sido declaradas em outro. Ao contrário dos programas até aqui vistos, podemos ter programas de vários milhares de linhas. Estes podem ser divididos em vários arquivos (módulos) que serão compilados separadamente. Digamos que para um programa grande tenhamos duas variáveis globais: um inteiro count e um float sum. Estas variáveis são declaradas normalmente em um dos módulos do programa. Por exemplo: int count; float sum; main (void) { ... return 0; } Num outro módulo do programa temos uma rotina que deve usar as variáveis globais acima. Digamos que a rotina que queremos se chama RetornaCount() e retorna o valor atual de count. O problema é que este módulo será compilado em separado e não tomará conhecimento dos outros módulos. O que fazer? Será que funcionaria se fizermos assim: int count; /* errado */ float sum; int RetornaCount (void) { return count; } Não. O módulo compilaria sem problema, mas, na hora que fizermos a linkagem (união dos módulos já compilados para gerar o executável) vamos nos deparar com uma mensagem de erro dizendo que as variáveis globais count e sum foram declaradas mais de uma vez. A maneira correta de se escrever o módulo com a função RetornaCount() é: extern int count; /* certo */ extern float sum; int RetornaCount (void) { return count; } Assim, o compilador irá saber que count e sum estão sendo usados no bloco mas que foram declarados em outro. static O funcionamento das variáveis declaradas como static depende se estas são globais ou locais. Variáveis globais static funcionam como variáveis globais dentro de um módulo, ou seja, são variáveis globais que não são (e nem podem ser) conhecidas em outros modulos. Isto é docsity.com 90 long int short int Os 16 bits de mais alta ordem long int int Os 16 bits de mais alta ordem float int Precisão - resultado arredondado double float Precisão - resultado arredondado long double double Precisão - resultado arredondado Modificadores de Funções A forma geral de uma função é, como já foi visto, tipo_de_retorno nome_da_função (declaração_de_parâmetros) { corpo_da_função } Uma função pode aceitar um modificador de tipo. Este vai modificar o modo como a função opera na passagem de parâmetros. A forma geral da função ficaria então: modificador_de_tipo tipo_de_retorno nome_da_função (declaração_de_parâmetros) { corpo_da_função } O nosso curso não aborda detalhes do funcionamento interno de funções. Para saber mais, consulte o manual do seu compilador ou algum livro especializado. pascal Faz com que a função use a convenção de funções da linguagem de programação Pascal. Isto faz com que as funções sejam compatíveis com programas em Pascal. cdecl O modificador de tipo cdecl faz com que a função use a convenção para funções do C. Raramente é usado pois é o default. Pode-se pensar no cdecl como sendo o "inverso" do pascal. interrupt Diz ao compilador que a função em questão será usada como um manipulador de interrupções. Isto faz com que o compilador preserve os registradores da CPU antes e depois da chamada à função. Mais uma vez este tópico está fora do escopo do curso. Ponteiros para Funções O C permite que acessemos variáveis e funções através de ponteiros! Podemos então fazer coisas como, por exemplo, passar uma função como argumento para outra função. Um ponteiro para uma função tem a seguinte declaração: tipo_de_retorno (*nome_do_ponteiro)(); ou tipo_de_retorno (*nome_do_ponteiro)(declaração_de_parâmetros); Repare nos parênteses que devem ser colocados obrigatoriamente. Se declaramos: tipo_de_retorno * nome(declaração_de_parâmetros); Estaríamos, na realidade, declarando uma função que retornaria um ponteiro para o tipo especificado. docsity.com 91 Porém, não é obrigatório se declarar os parâmetros da função. Veja um exemplo do uso de ponteiros para funções: #include <stdio.h> #include <string.h> void PrintString (char *str, int (*func)(const char *)); main (void) { char String [20]="Curso de C."; int (*p)(const char *); /* Declaracao do ponteiro para função Funcao apontada e' inteira e recebe como parametro uma string constante */ p=puts; /* O ponteiro p passa a apontar para a função puts que tem o seguinte prototipo: int puts(const char *) */ PrintString (String, p); /* O ponteiro é passado como parametro para PrintString */ return 0; } void PrintString (char *str, int (*func)(const char *)) { (*func)(str); /* chamada a função através do ponteiro para função */ func(str); /* maneira também válida de se fazer a chamada a função puts através do ponteiro para função func */ } Veja que fizemos a atribuição de puts a p simplesmente usando: p = puts; Disto, concluímos que o nome de uma função (sem os parênteses) é, na realidade, o endereço daquela função! Note, também, as duas formas alternativas de se chamar uma função através de um ponteiro. No programa acima, fizemos esta chamada por: (*func)(str); e func(str); Estas formas são equivalentes entre si. Além disto, no programa, a função PrintString() usa uma função qualquer func para imprimir a string na tela. O programador pode então fornecer não só a string mas também a função que será usada para imprimí-la. No main() vemos como podemos atribuir, ao ponteiro para funções p, o endereço da função puts() do C. Em síntese, ao declarar um ponteiro para função, podemos atribuir a este ponteiro o endereço de uma função e podemos também chamar a função apontada através dele. Não podemos fazer algumas coisas que fazíamos com ponteiros "normais", como, por exemplo, incrementar ou decrementar um ponteiro para função. Alocação Dinâmica A alocação dinâmica permite ao programador alocar memória para variáveis quando o programa está sendo executado. Assim, poderemos definir, por exemplo, um vetor ou uma docsity.com 92 matriz cujo tamanho descobriremos em tempo de execução. O padrão C ANSI define apenas 4 funções para o sistema de alocação dinâmica, disponíveis na biblioteca stdlib.h: No entanto, existem diversas outras funções que são amplamente utilizadas, mas dependentes do ambiente e compilador. Neste curso serão abordadas somente estas funções padronizadas. malloc A função malloc() serve para alocar memória e tem o seguinte protótipo: void *malloc (unsigned int num); A funçao toma o número de bytes que queremos alocar (num), aloca na memória e retorna um ponteiro void * para o primeiro byte alocado. O ponteiro void * pode ser atribuído a qualquer tipo de ponteiro. Se não houver memória suficiente para alocar a memória requisitada a função malloc() retorna um ponteiro nulo. Veja um exemplo de alocação dinâmica com malloc(): #include <stdio.h> #include <stdlib.h> /* Para usar malloc() */ main (void) { int *p; int a; int i; ... /* Determina o valor de a em algum lugar */ p=(int *)malloc(a*sizeof(int)); /* Aloca a números inteiros p pode agora ser tratado como um vetor com a posicoes */ if (!p) { printf ("** Erro: Memoria Insuficiente **"); exit; } for (i=0; i<a ; i++) /* p pode ser tratado como um vetor com a posicoes */ p[i] = i*i; ... return 0; } No exemplo acima, é alocada memória suficiente para se armazenar a números inteiros. O operador sizeof() retorna o número de bytes de um inteiro. Ele é util para se saber o tamanho de tipos. O ponteiro void* que malloc() retorna é convertido para um int* pelo cast e é atribuído a p. A declaração seguinte testa se a operação foi bem sucedida. Se não tiver sido, p terá um valor nulo, o que fará com que !p retorne verdadeiro. Se a operação tiver sido docsity.com 95 return 0; } free Quando alocamos memória dinamicamente é necessário que nós a liberemos quando ela não for mais necessária. Para isto existe a função free() cujo protótipo é: void free (void *p); Basta então passar para free() o ponteiro que aponta para o início da memória alocada. Mas você pode se perguntar: como é que o programa vai saber quantos bytes devem ser liberados? Ele sabe pois quando você alocou a memória, ele guardou o número de bytes alocados numa "tabela de alocação" interna. Vamos reescrever o exemplo usado para a função malloc() usando o free() também agora: #include <stdio.h> #include <stdlib.h> /* Para usar malloc e free */ main (void) { int *p; int a; ... p=(int *)malloc(a*sizeof(int)); if (!p) { printf ("** Erro: Memoria Insuficiente **"); exit; } ... free(p); ... return 0; } AUTO AVALIAÇÃO Veja como você está. Refaça os exemplos desta página, mas ao invés de trabalhar com um vetor de inteiros, use um vetor de strings (ou uma matriz de char, como você preferir). Faça leituras e apresente os resultados na tela. docsity.com 96 Alocação Dinâmica de Vetores e Matrizes Alocação Dinâmica de Vetores A alocação dinâmica de vetores utiliza os conceitos aprendidos na aula sobre ponteiros e as funções de alocação dinâmica apresentados. Um exemplo de implementação para vetor real é fornecido a seguir: #include <stdio.h> #include <stdlib.h> float *Alocar_vetor_real (int n) { float *v; /* ponteiro para o vetor */ if (n < 1) { /* verifica parametros recebidos */ printf ("** Erro: Parametro invalido **\n"); return (NULL); } /* aloca o vetor */ v = (float *) calloc (n, sizeof(float)); if (v == NULL) { printf ("** Erro: Memoria Insuficiente **"); return (NULL); } return (v); /* retorna o ponteiro para o vetor */ } float *Liberar_vetor_real (float *v) { if (v == NULL) return (NULL); free(v); /* libera o vetor */ return (NULL); /* retorna o ponteiro */ } void main (void) { float *p; int a; ... /* outros comandos, inclusive a inicializacao de a */ p = Alocar_vetor_real (a); ... /* outros comandos, utilizando p[] normalmente */ p = Liberar_vetor_real (p); } Alocação Dinâmica de Matrizes A alocação dinâmica de memória para matrizes é realizada da mesma forma que para vetores, com a diferença que teremos um ponteiro apontando para outro ponteiro que aponta para o valor final, ou seja é um ponteiro para ponteiro, o que é denominado indireção múltipla. A indireção múltipla pode ser levada a qualquer dimensão desejada, mas raramente é necessário mais de um ponteiro para um ponteiro. Um exemplo de implementação para matriz real bidimensional é fornecido a seguir. A estrutura de dados utilizada neste exemplo é composta por um vetor de ponteiros (correspondendo ao primeiro índice da matriz), sendo que cada ponteiro aponta para o início de uma linha da matriz. Em cada linha existe um vetor alocado dinamicamente, como descrito anteriormente (compondo o segundo índice da matriz). docsity.com 97 #include <stdio.h> #include <stdlib.h> float **Alocar_matriz_real (int m, int n) { float **v; /* ponteiro para a matriz */ int i; /* variavel auxiliar */ if (m < 1 || n < 1) { /* verifica parametros recebidos */ printf ("** Erro: Parametro invalido **\n"); return (NULL); } /* aloca as linhas da matriz */ v = (float **) calloc (m, sizeof(float *)); / Um vetor de m ponteiros para float */ if (v == NULL) { printf ("** Erro: Memoria Insuficiente **"); return (NULL); } /* aloca as colunas da matriz */ for ( i = 0; i < m; i++ ) { v[i] = (float*) calloc (n, sizeof(float)); /* m vetores de n floats */ if (v[i] == NULL) { printf ("** Erro: Memoria Insuficiente **"); return (NULL); } } return (v); /* retorna o ponteiro para a matriz */ } float **Liberar_matriz_real (int m, int n, float **v) { int i; /* variavel auxiliar */ if (v == NULL) return (NULL); if (m < 1 || n < 1) { /* verifica parametros recebidos */ printf ("** Erro: Parametro invalido **\n"); return (v); } for (i=0; i<m; i++) free (v[i]); /* libera as linhas da matriz */ free (v); /* libera a matriz (vetor de ponteiros) */ return (NULL); /* retorna um ponteiro nulo */ } void main (void) { float **mat; /* matriz a ser alocada */ int l, c; /* numero de linhas e colunas da matriz */ int i, j; ... /* outros comandos, inclusive inicializacao para l e c */ mat = Alocar_matriz_real (l, c); for (i = 0; i < l; i++) for ( j = 0; j < c; j++) mat[i][j] = i+j; docsity.com
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved