Bioquimica

Bioquimica

(Parte 7 de 8)

5) Examine uma tabela com as 10 reações da via glicolítica que contenha, respectivamente, o ∆G0’ e o ∆G das reações. Quais são as reações irreversíveis da glicólise?

6) Porque os valores de ∆G0’ e de ∆G da mesma reação podem ser diferentes? Para decidir se a via glicolítica numa determinada célula é reversível ou irreversível, que valor é mais relevante, ∆G0’ ou ∆G?

7) Uma pessoa incapaz de executar exercícios físicos intensos e prolongados teve suas enzimas analisadas. Todas as enzimas da via glicolítica estavam em concentração normal, com excessão da fosfoglicerato mutase muscular. a) Como será afetada a produção de energia metabólica em uma célula que apresenta baixos níveis desta enzima? b) Como será afetada a produção de Lactato na ausência desta enzima? [Referência: Di Mauro, S.;

Miranda, A.F.; Kahn, S.e Gitlin, K. - Human muscle phosphoglycerate mutase deficiency Science 1981, vol. 212, 1277-1279.

8) Calcular a porcentagem de energia armazenada pela célula ao degradar glicose pela via glicolítica. Sabe-se que:

Glicose → 2 lactato∆Go

' = - 47.0 cal/mol

MÓDULO 10: CICLO DE KREBS

1. Em condições aeróbicas, o destino do piruvato produzido na glicólise é sofrer uma descarboxilação oxidativa catalisada pela piruvato desidrogenase, que é um complexo multienzimático existente no interior da mitocôndria de eucariotos. Portanto, o piruvato precisa entrar na mitocôndria para ser degradado por essa via. A reação geral é a seguinte:

2O acetilCoA resultante da metabolização do piruvato é totalmente oxidado no ciclo do ácido

Piruvato + CoA + NAD+ → Acetil-CoA + NADH + CO2 cítrico, também chamado ciclo de Krebs, conforme a seguinte reação geral:

Acetil-CoA + 3 NAD+ + FAD + GDP + Pi + 2 H2O→ 2 CO2 + 3 NADH + FADH2 + GTP + CoA + 2 H+ O ciclo de Krebs, esquematizado na figura, compreende 8 reações, envolvendo 8 enzimas e 8 ácidos carboxílicos, di e tri-ácidos, todos dispersos na matriz da mitocondria. Portanto, começando no piruvato e passando pelo acetilCoA, ocorre oxidação completa desses metabolitos liberando 3CO2 sem participação de O2 molecular. Os agentes oxidantes em todas as reações são NAD+ ou FAD e as formas reduzidas destas co-enzimas (NADH + FADH2 ), resultantes do processo, só são reoxidadas na cadeia respiratória, uma via especializada que se localiza na membrana mitocondrial interna e será considerada mais adiante. 3. O ciclo de Krebs, conforme sua reação geral indica, é essencialmente catabólico, pois promove a oxidação do radical acetil a 2CO2 e retém parte da energia livre desta reação na forma de coenzimas reduzidos que, posteriormente, servirão à produção de ATP através da fosforilação oxidativa. Para cumprir esta função basta que os 8 intermediários do ciclo ocorram em concentrações catalíticas. Mas, o ciclo possui outra função, além da catabólica, diversos de seus intermediários alimentam as vias de síntese de aminoácidos, lipídeos e glicose, isto é, o ciclo tem também função anabólica e, portanto, deve ser classificado como anfibólico. Para que o ciclo desempenhe concomitantemente ambas as funções, catabólica e anabólica, as concentrações dos intermediários são mantidas e controladas através de um complexo sistema de reações auxiliares, conhecidas como reações anapleróticas. Um exemplo de reação anaplerótica é a carboxilação de piruvato para obter oxalacetato, catalisada pela enzima piruvato carboxilase. 4. A transformação de piruvato em acetil-CoA, é uma reação para a qual convergem diversas vias catabólicas e anabólicas, além da glicólise. Por esse motivo a piruvato desidrogenase está sujeita a um controle altamente elaborado, compreendendo dois níveis de regulação: a) controle alostérico através da inibição pelo produto, exercido por NADH e acetil-CoA; b) modificação covalente reversível da subunidade E1 da enzima, por fosforilação/desfosforilação. 5. As enzimas citrato sintase, isocitrato desidrogenase e α-cetoglutarato desidrogenase são as reguladoras do fluxo metabólico através do ciclo de Krebs e estão sujeitas a controle alostérico, envolvendo NADH como inibidor e Ca+ e ADP como ativadores.

Citrato cis-Aconitato

Isocitrato

Oxalosuccinato a-CetoglutaratoSuccinil-CoA

Succinato

Fumarato L-Malato

Oxaloacetato Acetil-CoA

Piruvato CoASH + NAD+

CO2 + NADH

H2O CoASH

CO2

CoASHCO2GDP + Pi GTP

FAD FADH2

Ciclo de Krebs

Grupo de discussão 10

1) Escrever a reação de formação de acetil-CoA a partir de piruvato e indicar: a) as 5 coenzimas necessárias b) as vitaminas envolvidas c) a sua localização celular

2) Como é a equação química, estequiometricamente equilibrada, que representa a oxidação de acetil-CoA no ciclo de Krebs? Como se pode medir o rendimento do ciclo de Krebs em termos de coenzimas reduzidos (poder redutor) e ATP (“ligações de fosfato de alta energia”).

3) Identifique os tipos de reações que ocorrem no ciclo de Krebs, mostrando as respectivas equações químicas.

4) Equacione a descarboxilação oxidativa de α-cetoglutarato a succinato, respeitando a estequiometria da reação. Mostre as etapas que compõem esta reação com as respectivas enzimas e coenzimas.

5) Quais são as enzimas do ciclo de Krebs sujeitas a regulação? Explique como cada uma delas é regulada.

6) Explique porque piruvato é estequiometricamente convertido a CO2 na respiração de fatias de músculo mantidas em solução fisiológica, enquanto oxalacetato e citrato tem efeito catalítico neste mesmo processo. Mostre porque a respiração pode ser sustentada pelo consumo estequiométrico de citrato, mas não de acetato, quando o ciclo de Krebs é inibido por malonato.

7) Dispondo das enzimas necessárias, a adição de que compostos fará aumentar a concentração de oxaloacetato em um sistema “in vitro” que contém mitocôndrias: acetil-CoA, piruvato, glutamato, citrato ou ácidos graxos?

8) Uma suspensão de mitocôndrias, suplementada com acetil-CoA marcada com C14, produz CO2 marcado apenas quando suprida de oxigênio. Em condições anaeróbias, a adição de azul de metileno restaura a produção de CO2 marcado, observando-se também a descoloração do corante (azul de metileno reduzido é incolor). Explique estes dados.

MÓDULO 1: CADEIA RESPIRATÓRIA E FOSFORILAÇÃO OXIDATIVA

1. Fosforilação oxidativa é o processo bioquímico pelo qual a oxidação de NADH e FADH2 , produzidos na glicólise e ciclo de Krebs, ocorre acoplada à produção de ATP, a partir de ADP +

Pi. Este processo se dá na cadeia respiratória ou cadeia de transporte de elétrons, que compreende um conjunto ordenado de enzimas e transportadores de elétrons inseridos na membrana interna da mitocôndria.

2. A cadeia respiratória contem 4 complexos, I,I, II e IV, ordenados por ordem crescente de potencial redox, indo do potencial padrão de NAD+/NADH (E0’= -0,315V) ao do O2/H2O (E0’= +0,815V). Os elétrons são transferidos do complexo I ou I para o complexo II pela coenzima

Q (ou ubiquinona), e do complexo I para o complexo IV pelo citocromo C para chegar ao O2. NADH e FADH2 , cedem elétrons, respectivamente, aos complexo I e I. A transferência exergônica de elétrons do nível redox de NADH para o de O2 (∆E0’= 1,130V) envolve uma diferença de energia livre liberada (∆G0’= -218kJ/mol) que é em parte retida pelo transporte de H+ do lado interno para o externo da membrana, criando o gradiente eletroquímico de prótons que permitirá “empurrar” o processo endergônico de fosforilação de ADP por Pi para gerar ATP, através da bomba de prótons que constitui a ATP sintase (também conhecida com F1F0- ATPase).

Complexo IComplexo IIIComplexo IV

Espaço Intermembranar

Matrix Mitocondrial

2 H+

4 H+

Cit C 2 H+

Complexo I FADH2

3. A ATP sintase é distinta e fisicamente separada da cadeia de transporte de elétrons. A transferência de 2e de NADH até O2 envolve um ∆G0’= -218kJ/mol, que gera um incremento no gradiente de prótons suficiente para mover a ATP sintase, permitindo a produção de 3 moles de

ATP (∆G0’= +30,5kJ/mol). Nestas condições, a ATP sintase trabalha com uma eficiência termodinâmica igual a 42%. É, no entanto, necessário destacar que quando os 2e saem do nível redox de FADH2 , formam-se apenas 2ATP. Naturalmente, para uma melhor medida da real eficiência termodinâmica da fosforilação oxidativa seria preciso estimar o ∆G da transferência de

4. A grande quantidade de energia livre que seria dissipada na oxidação completa da glicose a CO2 e H2O [C6H12O6 + 6 O2 → 6 CO2 + 6 H2O; ∆G0’= -2823 kJ/mol] é aproveitada para produção de ATP, graças quase exclusivamente ao processo de fosforilação oxidativa, rendendo 38ATP por mol de glicose (incluindo neste total 2ATP da glicólise e 2 do ciclo de Krebs).

5. Vários mecanismos da cadeia de transporte de elétrons e de seu acoplamento à síntese de ATP foram elucidados através da utilização de inibidores e desacopladores, entre os quais estão: rotenona, amital, antimicina A, cianeto e DNP.

− Rotenona e amital inibem a redução dos complexo I e I por NADH.

− Antimicina A inibe o transporte de elétrons no complexo I.

(Parte 7 de 8)

Comentários